
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (11): 115-124.DOI: 10.12068/j.issn.1005-3026.2025.20240242
• Resources & Civil Engineering • Previous Articles Next Articles
Peng JIA1(
), Bin-yu SUN1, Li ZHU2, Li-min SONG2
Received:2024-12-31
Online:2025-11-15
Published:2026-02-07
Contact:
Peng JIA
CLC Number:
Peng JIA, Bin-yu SUN, Li ZHU, Li-min SONG. Numerical Simulation on Tunneling Parameter Optimization of Shield Machine in Cutting Obstacle Piles in Existing Stations[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 115-124.
| 工程名 | 土层参数 | 刀盘转速 | 推速 |
|---|---|---|---|
| rad∙s-1 | mm∙s-1 | ||
| 宁波轨道交通4号线柳宁盾构区间工程[ | 淤泥质土、粉砂粉质黏土 | 贴近桩时控制在0.084 | 桩前1 m时0.083~0.167 |
| 杭州地铁2号线下穿凤起桥[ | 粉夹砂质粉土、砂质粉土、淤泥质粉质黏土 | 0.125~0.157 | 接近桩基时0.500~0.830, 桩前0.017~0.033 |
| 苏州2号线石路站下穿广济桥[ | 粉砂、粉质黏土 | 0.052~0.105 | 0.017~0.050 |
| 大连地铁一期工程华北路至山东路盾构穿越桥梁[ | 淤泥质粉细砂层、淤泥质土层和粉细砂层 | 0.084 | 0.167~0.250 |
| 上海地铁10号线盾构切削简支梁桥桩基[ | 黏质粉土夹粉质黏土、灰色砂质粉土、淤泥质黏土 | 0.067 | 0.083 |
| 广州地铁4号线南延段广大区间盾构机下穿大涌桥[ | 洪积粉细砂层、粉质黏土层 | 0.084 | 0.167~0.250 |
| 北京地铁下穿桥梁桩基[ | 粉质黏土-中细沙-卵石地层,大多为卵石 | 0.063 | 0.083~0.167 |
| 哈尔滨地铁3号线盾构切割桥桩[ | 主要地层为中砂层 | — | 0.167~0.333 |
| 沈阳地铁1号线东延线下穿桥桩 | 主要地层为圆砾、砾砂层 | 0.084~0.105 | 0.083~0.250 |
| 沈阳地铁4号线下穿2号线车站[ | 切桩段为砾砂层 | — | 0.250~0.420 |
| 广州地铁12号线官洲站—大学城北站[ | 全风化混合花岗岩、强风化混合花岗岩和中风化混合花岗岩,局部穿越砂质黏土 | 切桩过程中0.084~0.105 | 桩前3 m时控制在0.083~0.167;切桩过程中控制在0.083内 |
| 南昌地铁2号线盾构穿越桥梁桩[ | 素填土、粉黏土、砾砂、圆砾、强风化泥质粉砂岩和中风化泥质粉砂岩 | 0.031~0.052 | 0.017~0.083 |
| 深圳地铁10号线穿越公路桥梁桩群[ | 中微风化花岗岩层和砾质黏性土层 | 0.125~0.147 | 0.167~0.333 |
| 沈阳地铁6号线下穿2号线市图书馆站[ | 切桩段为砂层 | 0.115 | 0.333~0.833 |
Table 1 Statistical table of tunneling parameters for pile-cutting engineering by shield machine
| 工程名 | 土层参数 | 刀盘转速 | 推速 |
|---|---|---|---|
| rad∙s-1 | mm∙s-1 | ||
| 宁波轨道交通4号线柳宁盾构区间工程[ | 淤泥质土、粉砂粉质黏土 | 贴近桩时控制在0.084 | 桩前1 m时0.083~0.167 |
| 杭州地铁2号线下穿凤起桥[ | 粉夹砂质粉土、砂质粉土、淤泥质粉质黏土 | 0.125~0.157 | 接近桩基时0.500~0.830, 桩前0.017~0.033 |
| 苏州2号线石路站下穿广济桥[ | 粉砂、粉质黏土 | 0.052~0.105 | 0.017~0.050 |
| 大连地铁一期工程华北路至山东路盾构穿越桥梁[ | 淤泥质粉细砂层、淤泥质土层和粉细砂层 | 0.084 | 0.167~0.250 |
| 上海地铁10号线盾构切削简支梁桥桩基[ | 黏质粉土夹粉质黏土、灰色砂质粉土、淤泥质黏土 | 0.067 | 0.083 |
| 广州地铁4号线南延段广大区间盾构机下穿大涌桥[ | 洪积粉细砂层、粉质黏土层 | 0.084 | 0.167~0.250 |
| 北京地铁下穿桥梁桩基[ | 粉质黏土-中细沙-卵石地层,大多为卵石 | 0.063 | 0.083~0.167 |
| 哈尔滨地铁3号线盾构切割桥桩[ | 主要地层为中砂层 | — | 0.167~0.333 |
| 沈阳地铁1号线东延线下穿桥桩 | 主要地层为圆砾、砾砂层 | 0.084~0.105 | 0.083~0.250 |
| 沈阳地铁4号线下穿2号线车站[ | 切桩段为砾砂层 | — | 0.250~0.420 |
| 广州地铁12号线官洲站—大学城北站[ | 全风化混合花岗岩、强风化混合花岗岩和中风化混合花岗岩,局部穿越砂质黏土 | 切桩过程中0.084~0.105 | 桩前3 m时控制在0.083~0.167;切桩过程中控制在0.083内 |
| 南昌地铁2号线盾构穿越桥梁桩[ | 素填土、粉黏土、砾砂、圆砾、强风化泥质粉砂岩和中风化泥质粉砂岩 | 0.031~0.052 | 0.017~0.083 |
| 深圳地铁10号线穿越公路桥梁桩群[ | 中微风化花岗岩层和砾质黏性土层 | 0.125~0.147 | 0.167~0.333 |
| 沈阳地铁6号线下穿2号线市图书馆站[ | 切桩段为砂层 | 0.115 | 0.333~0.833 |
| 岩土 | 密度/(g∙cm-3) | 孔隙比 | 孔隙率/% | 静止侧压力系数 | 泊松比 | 变形模量/MPa |
|---|---|---|---|---|---|---|
| 粉细砂 | 1.90 | 0.85 | 46.0 | 0.47 | 0.32 | 10 |
| 中粗砂 | 2.00 | 0.80 | 44.0 | 0.43 | 0.30 | 20 |
| 砾砂 | 2.00 | 0.75 | 43.0 | 0.41 | 0.29 | 28 |
| 圆砾 | 2.05 | 0.65 | 39.0 | 0.35 | 0.26 | 35 |
Table 2 Main soil types and their mechanical properties
| 岩土 | 密度/(g∙cm-3) | 孔隙比 | 孔隙率/% | 静止侧压力系数 | 泊松比 | 变形模量/MPa |
|---|---|---|---|---|---|---|
| 粉细砂 | 1.90 | 0.85 | 46.0 | 0.47 | 0.32 | 10 |
| 中粗砂 | 2.00 | 0.80 | 44.0 | 0.43 | 0.30 | 20 |
| 砾砂 | 2.00 | 0.75 | 43.0 | 0.41 | 0.29 | 28 |
| 圆砾 | 2.05 | 0.65 | 39.0 | 0.35 | 0.26 | 35 |
| 密度 | 剪切模量 G/MPa | 完整材料强度参数A | 损伤材料强度参数B | 完整材料强度参数N | 应变率系数C | 损伤材料强度参数M | 抗拉强度 T/MPa |
|---|---|---|---|---|---|---|---|
| kg∙m-3 | |||||||
| 2 400 | 12 500 | 0.630 4 | 0.210 1 | 0.843 7 | 0.006 | 0.843 7 | 3.4 |
Table 3 Concrete model parameters
| 密度 | 剪切模量 G/MPa | 完整材料强度参数A | 损伤材料强度参数B | 完整材料强度参数N | 应变率系数C | 损伤材料强度参数M | 抗拉强度 T/MPa |
|---|---|---|---|---|---|---|---|
| kg∙m-3 | |||||||
| 2 400 | 12 500 | 0.630 4 | 0.210 1 | 0.843 7 | 0.006 | 0.843 7 | 3.4 |
| [1] | Masini L, Bergamo F, Rampello S. Effect of soil improvement on ground movements induced by conventional tunnelling[J]. Tunnelling and Underground Space Technology, 2025, 155: 106163. |
| [2] | Jiang Y, Li Y L, Yao A J, et al. Soil deformation investigation of a piled-raft foundation pit under-crossed by a super-large diameter shield tunnel[J]. Applied Sciences, 2023, 13(9): 5774. |
| [3] | Huang K, Sun Y W, Yang J S, et al. Three-dimensional displacement characteristics of adjacent pile induced by shield tunneling under influence of multiple factors[J]. Journal of Central South University, 2022, 29(5): 1597-1615. |
| [4] | Jeon Y J, Seo S K, Choi Y N, et al. Effects of pile tip cutting due to shield TBM tunnel construction on pile behaviour under various reinforcement conditions[J]. Geomechanics and Engineering, 2024, 39(2): 181-195. |
| [5] | Wang F, Yuan D J, Cai R, et al. Field test study on cutting obstacle piles directly by shield cutters[J]. Applied Mechanics and Materials, 2013, 353-356: 1433-1439. |
| [6] | Guan X M, Liu Z L, Xu H W, et al. Mechanical properties and influencing factors of shield cutting existing station supporting piles[J]. Sustainability, 2023, 15(15): 11699. |
| [7] | Ye X W, Liu Z X, Chen Y B, et al. Deformation of existing underpasses due to pile cutting and shield tunneling: observations from field monitoring and explanations by analytical model[J]. Case Studies in Construction Materials, 2024, 21: e03836. |
| [8] | Lou P, Huang W X, Huang X D. Analysis of shield tunnels undercrossing an existing building and tunnel reinforcement measures[J]. Applied Sciences, 2023, 13(9): 5729. |
| [9] | 陈城, 史培新, 王占生, 等. 基于融合多注意力机制的深度学习的盾构荷载预测方法[J]. 东北大学学报(自然科学版), 2023, 44(11): 1631-1637, 1646. |
| Chen Cheng, Shi Pei-xin, Wang Zhan-sheng, et al. Shield load prediction method based on deep learning with multiattention mechanism[J]. Journal of Northeastern University (Natural Science), 2023, 44(11): 1631-1637, 1646. | |
| [10] | Ma S J, Li M Y, Guo Y cheng, et al. Field test and research on shield cutting pile penetrating cement soil single pile composite foundation[J]. Geomechanics and Engineering, 2020, 23(6): 513-521. |
| [11] | Cao M M, Ma S J, Zhang J W. Numerical analysis study on the influence of shield cutting pile on the settlement of pile-soil composite foundation[J]. Advances in Civil Engineering, 2024, 2024(1): 5345820. |
| [12] | Guo Y D, Jin D L, Yuan D J, et al. Dynamic analysis of cutting RC structure with shield disc-cutter: insights from the coupled simulation and laboratory test verification[J]. Engineering Failure Analysis, 2025, 168: 109112. |
| [13] | Shi P X, Tao Y F, Jia P J, et al. Experimental study on shield machine cutting steel-reinforced concrete diaphragm wall[J]. Tunnelling and Underground Space Technology, 2024, 153: 106008. |
| [14] | Deng L C, Yuan Y X, Zhuang Q W, et al. Novel PDC cutter for reinforced concrete based on linear and rotational cutting tests[J]. Tunnelling and Underground Space Technology, 2022, 129: 104681. |
| [15] | Wang Y Q, Wang X Y, Xiong Y Y, et al. Full-scale laboratory test of cutting large-diameter piles directly by shield cutterhead[J]. Advances in Civil Engineering, 2022, 2022(1): 8780927. |
| [16] | Xu P, Zuo S X. Study on the JH-2 model parameters for metro shield cutting reinforced concrete pile[J]. Geotechnical and Geological Engineering, 2021, 39(7): 5267-5278. |
| [17] | Chen X L, Zhang X M, Zhou X S, et al. Vertical mechanical response of axial loaded pile to tunneling-induced pile exposure[J]. Computers and Geotechnics, 2023, 159: 105416. |
| [18] | Zhang Y T, Ding C, Lu H, et al. Effects of large-scale twin tunnel excavation on an existing pile group: three-dimensional centrifuge modeling[J]. Soil Mechanics and Foundation Engineering, 2022, 58(6): 500-506. |
| [19] | Jin D L, Guo Y D, Li X G, et al. Modeling of reinforced-concrete cutting with shield rippers using FEM-DEM-coupling method[J]. International Journal of Mechanical Sciences, 2024, 282: 109619. |
| [20] | Yu H, Chen L, Peng K X. Adaptability of a reinforced concrete diaphragm wall cut by disc cutter[J]. Sustainability, 2022, 14(23): 16154. |
| [21] | Liu B, Li T, Han Y H, et al. DEM-continuum mechanics coupling simulation of cutting reinforced concrete pile by shield machine[J]. Computers and Geotechnics, 2022, 152: 105036. |
| [22] | Fang Y R, Li X G, Cui L M, et al. Dynamic damage and fracture mechanism of curved ripper cutting reinforced concrete composites: numerical simulation combined with engineering practice[J]. Tunnelling and Underground Space Technology, 2024, 149: 105786. |
| [23] | Deng L C, Yuan Y X, Li X Z, et al. Evaluation on cutting performance of novel PDC cutter for pipe jacking machine[J]. Underground Space, 2024, 14: 34-52. |
| [24] | Liu B, Hu M M, Zhang B, et al. Influence of abrasive waterjet pre-cutting slit on the performance of shield cutter cutting reinforced concrete[J]. Tunnelling and Underground Space Technology, 2023, 142: 105448. |
| [25] | 李发勇. 可拆解盾构下穿既有桥桩磨桩施工影响研究: 以宁波轨道交通4号线柳宁盾构区间为例[J]. 隧道建设(中英文), 2020, 40(10): 1506-1515. |
| Li Fa-yong. Research on construction influence of dismountable shield crossing underneath existing bridge piles: a case study on Liuxi Station—Ningbo Railway Station section on Ningbo metro line No. 4[J]. Tunnel Construction, 2020, 40(10): 1506-1515. | |
| [26] | 王哲, 吴淑伟, 姚王晶, 等. 盾构穿越既有桥梁桩基磨桩技术的研究[J]. 岩土工程学报, 2020, 42(1): 117-125. |
| Wang Zhe, Wu Shu-wei, Yao Wang-jing, et al. Study on grinding pile technology of shield crossing existing bridge pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 117-125. | |
| [27] | Li X G, Yuan D J, Jiang X Q, et al. Damages and wear of tungsten carbide-tipped rippers of tunneling machines used to cutting large diameter reinforced concrete piles[J]. Engineering Failure Analysis, 2021, 127: 105533. |
| [28] | 殷雪峰. 盾构机切桩风险分析与施工技术探究[J]. 设备管理与维修, 2020(12): 146-147. |
| Yin Xue-feng. Risk analysis and construction technology of shield machine pile cutting[J]. Plant Maintenance Engineering, 2020(12): 146-147. | |
| [29] | Xu Y F, Sun D A, Sun J, et al. Soil disturbance of Shanghai silty clay during EPB tunnelling[J]. Tunnelling and Underground Space Technology, 2003, 18(5): 537-545. |
| [30] | 姜艳林. 广州地铁富水软弱地层盾构机直接切桩通过桥梁桩基风险分析与施工技术研究[J]. 广东土木与建筑, 2015, 22(5): 40-43. |
| Jiang Yan-lin. Risk analyze and construction technology research on TBM directly cut and get through the bridge piers in rich water soft ground on Guangzhou metro[J]. Guangdong Architecture Civil Engineering, 2015, 22(5): 40-43. | |
| [31] | Wang X Y, Yuan D J. Research on the interaction between the pile and shield machine in the process of cutting a reinforced concrete pile foundation[J]. Applied Sciences, 2023, 13(1): 245. |
| [32] | Wang G, Qiao S, Li G Y, et al. Direct shield cutting of large-diameter reinforced concrete group piles: case study on Shenyang Metro construction[J]. Case Studies in Construction Materials, 2023, 18: e01864. |
| [33] | 杨辉, 万坤. 盾构下穿既有线路斜切群桩设计及应用[J]. 建筑机械, 2021(10): 90-92. |
| Yang Hui, Wan Kun. Design and application of oblique cutting pile group of shield under existing line[J]. Construction Machinery, 2021(10): 90-92. | |
| [34] | 牛瑞, 王宁, 史策辉. 泥水盾构机切削大直径桥桩控制参数分析[J]. 工程技术研究, 2020, 5(8): 28-29. |
| Niu Rui, Wang Ning, Shi Ce-hui. Analysis of control parameters of slurry shield machine cutting large diameter bridge piles[J]. Engineering and Technological Research, 2020, 5(8): 28-29. | |
| [35] | Li Z, Chen Z Q, Wang L, et al. Numerical simulation and analysis of the pile underpinning technology used in shield tunnel crossings on bridge pile foundations[J]. Underground Space, 2021, 6(4): 396-408. |
| [36] | 林向阳, 高伟琪, 刘学彦, 等. 盾构直接切削大直径桩施工技术研究[J]. 土木工程学报, 2024, 57(S1): 178-183. |
| Lin Xiang-yang, Gao Wei-qi, Liu Xue-yan, et al. Research on the construction technology of directly cutting large diameter piles with shield tunneling[J]. China Civil Engineering Journal, 2024, 57(S1): 178-183. | |
| [37] | 刘克奇, 杜佃春, 赵文, 等. 基于机器学习的泥水盾构关键掘进参数预测与优化[J]. 东北大学学报(自然科学版), 2023, 44(11): 1621-1630. |
| Liu Ke-qi, Du Dian-chun, Zhao Wen, et al. Machine learning-based prediction and optimization of slurry shield’s key tunneling parameters[J]. Journal of Northeastern University (Natural Science), 2023, 44(11): 1621-1630. | |
| [38] | 王闯, 彭祖昭, 苟超, 等. 盾构近接下穿群桩基础施工影响分区研究[J]. 土木工程学报, 2017, 50(sup2): 174-181. |
| Wang Chuang, Peng Zu-zhao, Gou Chao, et al. Study on the influence zone partition method of shield tunnel-pile foundations approaching construction[J]. China Civil Engineering Journal, 2017, 50(sup2): 174-181. |
| [1] | Qian BAI, Wen ZHAO, Wen-xin CAO, Yan-jun LU. Study on Deformation Response Caused by Large-Section Excavation Under the Support of Pipe-Roof and Beam [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 129-136. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||