东北大学学报:自然科学版 ›› 2016, Vol. 37 ›› Issue (5): 634-637.DOI: 10.12068/j.issn.1005-3026.2016.05.006

• 材料与冶金 • 上一篇    下一篇

基于最小二乘支持向量机的脑电信号分类

刘冲, 于清文, 陆志国, 王宏   

  1. (东北大学 机械工程与自动化学院, 辽宁 沈阳110819)
  • 收稿日期:2015-04-08 修回日期:2015-04-08 出版日期:2016-05-15 发布日期:2016-05-13
  • 通讯作者: 刘冲
  • 作者简介:刘冲(1980-),男,辽宁沈阳人,东北大学讲师,博士; 王宏(1960-),女,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51405073); 教育部高等学校博士学科点专项科研基金资助项目(20120042120023; 20130042120027); 辽宁省高等学校创新团队项目(LT2014006).

EEG Classification Based on Least Squares Support Vector Machine

LIU Chong, YU Qing-wen, LU Zhi-guo, WANG Hong   

  1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.
  • Received:2015-04-08 Revised:2015-04-08 Online:2016-05-15 Published:2016-05-13
  • Contact: LIU Chong
  • About author:-
  • Supported by:
    -

摘要: 研究了基于运动想象脑电信号对大脑的想象运动状态进行分类识别的问题.根据事件相关同步和事件相关去同步现象识别出被试的想象运动状态,通过频带能量特征提取方法获得了想象左右手运动时的脑电信号特征,使用最小二乘支持向量机对提取到的频带能量特征进行分类.结果表明,使用最小二乘支持向量机可以对运动想象脑电信号的频带能量特征进行有效分类,分类正确率达到92%,其分类效果与使用标准支持向量机相当,但在计算速度上更有优势.

关键词: 脑电信号, 运动想象, 频带能量, 最小二乘, 支持向量机

Abstract: The classification of mental states based on motor imagery(MI) electroencephalograph(EEG) signal was investigated. All the states were classified according to the phenomenon of event-related synchronization and event-related desynchronization. The band power of the MI EEG signal was extracted as the input feature and then classified by using LS-SVM. The final classification accuracy is 92%, which shows that LS-SVM performs well for the classification of the band power feature of MI EEG signal. And compared to the standard SVM, the performance of LS-SVM is as good as that of the standard SVM, but has some advantage in computing time.

Key words: EEG(electroencephalograph), motor imagery, band power, least square, support vector machine(SVM)

中图分类号: