东北大学学报:自然科学版 ›› 2020, Vol. 41 ›› Issue (4): 492-498.DOI: 10.12068/j.issn.1005-3026.2020.04.007

• 信息与控制 • 上一篇    下一篇

电动汽车动力电池健康状态在线估算方法

刘芳1,2,3, 刘欣怡1, 苏卫星1, 林辉4   

  1. (1. 天津工业大学 计算机科学与技术学院, 天津300387; 2. 北京矿冶科技集团有限公司 采矿冶金过程自动化国家重点实验室/北京矿冶过程自动化重点实验室, 北京100160; 3. 天津清源电动车辆有限责任公司, 天津300462; 4. 东软睿驰汽车技术(沈阳)有限公司, 辽宁 沈阳110179)
  • 收稿日期:2019-08-21 修回日期:2019-08-21 出版日期:2020-04-15 发布日期:2020-04-17
  • 通讯作者: 刘芳
  • 作者简介:刘芳(1983-),女,辽宁沈阳人,天津工业大学副教授,博士; 苏卫星(1980-),男,辽宁盘锦人,天津工业大学教授.
  • 基金资助:
    国家重点研发计划项目(2017YFB1103003); 国家自然科学基金青年基金资助项目(51607122); 采矿冶金过程自动化国家重点实验室/北京矿冶过程自动化重点实验室研究基金资助项目(BGRIMM-KZSKL-2018-02); 天津市自然科学基金资助项目(18JCQNJC77200); 天津市教委科研计划项目(2017KJ094).

Online Estimation Method for State of Health of Electric Vehicle Power Battery

LIU Fang1,2,3, LIU Xin-yi1, SU Wei-xing1,2, LIN Hui4   

  1. 1. School of Computer Science and Technology, Tiangong University, Tianjin 300387, China; 2. State Key Laboratory of Process Automation in Mining & Meallurgy/Beijing Key Laboratory of Process Automation in Mining & Metallurgy, BGRIMM Technology Group,Beijing 100160, China; 3. Tianjin Qingyuan Electric Vehicle Limited Liability Company, Tianjin 300462, China; 4. Neusoft Reach Automative Technology Co. Ltd., Shenyang 110179, China.
  • Received:2019-08-21 Revised:2019-08-21 Online:2020-04-15 Published:2020-04-17
  • Contact: SU Wei-xing
  • About author:-
  • Supported by:
    -

摘要: 针对电动汽车动力电池SOH(state of health)的估算问题,提出一种可以在线运行的有效估算方法.其优势在于仅依托电池管理系统实时测量电压、电流等数据,无需离线电池寿命衰退曲线及电池的初始状态,因此更符合电动汽车对于SOH估算问题的实际需求.在电池恒流充电模式下,以Thevenin及OCV-SOC模型为基础,构建以时间和SOH为隐变量的电池模型.基于此电池模型,提出利用NLS(nonlinear least square)初始化GA搜索范围的快速求解算法进行在线参数辨识,得到电动汽车实时的SOH估计值.验证结果表明SOH估计算法具有较好的实用性及较高的估算精度.

关键词: 电动汽车, SOH在线估计, 电池模型, 遗传算法, 非线性最小二乘法

Abstract: An effective estimation method for online operation of electric vehicle power battery SOH was proposed. The advantage is that it only relies on the voltage and current data measured by the battery management system in real time, without the need of offline battery life decay curve and the initial state of the battery. Therefore, it is more in line with the actual needs of electric vehicles for SOH estimation. Based on the Thevenin and OCV-SOC models, a battery model with time and SOH as hidden variables was constructed in the battery constant-current charging mode. Based on this battery model, a fast solving algorithm based on NLS(nonlinear least square) initialization GA search range was proposed for online parameter identification, and the real-time SOH estimation value of electric vehicle was obtained. The verification results showed that the SOH estimation algorithm has good practicability and high estimation accuracy.

Key words: electric vehicle, SOH online estimation, battery model, genetic algorithm, nonlinear least squares

中图分类号: