东北大学学报:自然科学版 ›› 2016, Vol. 37 ›› Issue (1): 84-88.DOI: 10.12068/j.issn.1005-3026.2016.01.018

• 资源与土木工程 • 上一篇    下一篇

基于无人机影像的露天矿工程量监测分析方法

许志华1,吴立新2,3,陈绍杰4,王植2   

  1. (1.北京师范大学 民政部/教育部减灾与应急管理研究院, 北京100875;2.东北大学 资源与土木工程学院, 辽宁 沈阳110819; 3.中国矿业大学 环境与测绘学院, 江苏 徐州221116; 4.龙岩学院 资源工程学院, 福建 龙岩364012)
  • 收稿日期:2014-05-06 修回日期:2014-05-06 出版日期:2016-01-15 发布日期:2016-01-08
  • 通讯作者: 许志华
  • 作者简介:许志华(1987-),男,河北保定人,北京师范大学博士研究生; 吴立新(1966-),男,江西宜春人,东北大学教授,博士生导师,教育部“长江学者奖励计划”特聘教授.
  • 基金资助:
    国家重点基础研究发展计划项目(2011CB707102); 中央高校基本科研业务费专项资金资助项目(105565GK).

Method of Engineering Volume Monitoring and Calculation for Open-Pit Mine from UAV Images

XU Zhi-hua1, WU Li-xin○2,3, CHEN Shao-jie4, WANG Zhi2   

  1. 1. Academe of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China; 2. School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; 3. School of Environment Science & Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; 4. College of Resources Engineering, Longyan University, Longyan 364012, China.
  • Received:2014-05-06 Revised:2014-05-06 Online:2016-01-15 Published:2016-01-08
  • Contact: WU Li-xin
  • About author:-
  • Supported by:
    -

摘要: 提出了一种基于无人机影像序列的露天矿工程量(采剥量、堆放量等)计算方法.该方法利用旋翼无人机搭载低成本便携式数码摄像机获取露天矿山不同时间的视频帧或影像序列.基于运动恢复结构(SfM)和多目立体视觉(PMVS)算法,自动生成矿山完整、致密的三维点云.研究设计了一种基于形态不变区的点云配准方法进行两期点云空间配准,并采用DTM三角网差值法计算矿山工程量.矿堆体积变化无人机监测实验结果表明,该方法重建点云模型的点间相对误差小于±1%,堆放体积变化监测精度接近92%,基本达到地面LiDAR扫描的堆放体积变化监测精度.

关键词: 无人机, 露天矿, 运动恢复结构(SfM), 多目立体视觉(PMVS), 工程量

Abstract: The image sequences from an unmanned aerial vehicle (UAV) are used to calculate the engineering volume (overburden amount, stacking amount, etc.) of open-pit mine. Firstly, two sets of video frames or optical images of the open-pit mine are collected with a time interval using a portable digital camera installed on an octocopter. Next, two groups of the point clouds are automatically generated by implementing structure from motion (SfM) and patch-based multi-view stereo (PMVS) algorithms. And then, the two point clouds are fine registered with a constant region-based registration method. Finally, the engineering volume is computed with a differential method for digital terrain model triangulated irregular network (DTM-TIN). It shows that the relative error of the point cloud model is lower than ±1% in the experiment for change detection of a stacking stockpile with UAV images. Moreover, the accuracy for monitoring the volume change is up to 92%, which is comparable to that of a terrestrial laser scanning.

Key words: unmanned aerial vehicle (UAV), open-pit mine, structure from motion (SfM), patch-based multi-view stereo (PMVS), engineering volume

中图分类号: