东北大学学报:自然科学版 ›› 2016, Vol. 37 ›› Issue (9): 1230-1234.DOI: 10.12068/j.issn.1005-3026.2016.09.004

• 信息与控制 • 上一篇    下一篇

执行器饱和的随机Markov跳变系统非脆弱有限时间镇定

齐文海, 李岳响, 崔秀丽   

  1. (东北大学 信息科学与工程学院, 辽宁 沈阳110819)
  • 收稿日期:2015-06-12 修回日期:2015-06-12 出版日期:2016-09-15 发布日期:2016-09-18
  • 通讯作者: 齐文海
  • 作者简介:齐文海(1986-),男,山东泰安人,东北大学博士研究生.
  • 基金资助:
    国家自然科学基金重点资助项目(61573088,61433004).

Non-fragile Finite-Time Stabilization for Stochastic Markov Jump Systems with Actuator Saturation

QI Wen-hai, LI Yue-xiang, CUI Xiu-li   

  1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
  • Received:2015-06-12 Revised:2015-06-12 Online:2016-09-15 Published:2016-09-18
  • Contact: QI Wen-hai
  • About author:-
  • Supported by:
    -

摘要: 研究了带有执行器饱和与转移概率部分已知的随机Markov跳变系统的非脆弱有限时间镇定问题.转移概率部分已知包含转移概率完全已知和转移概率完全未知两类特殊的情况.首先基于参数依赖型Lyapunov函数和自由权矩阵方法,对随机Markov饱和跳变系统的镇定进行了研究,提出了有限时间稳定的充分条件.然后利用线性矩阵不等式的方法实现了非脆弱有限时间状态反馈控制器与吸引域最大估计值的求解.最后通过四模态随机Markov跳变系统的数值例子验证了结论的有效性.

关键词: 执行器饱和, Markov跳变系统, 转移概率部分已知, 有限时间镇定, 非脆弱状态反馈控制器

Abstract: This paper dealed with the problem of finite-time stabilization for a class of stochastic Markov jump systems with both actuator saturation and partly known transition probabilities. Partly known transition probabilities covered completely known transition probabilities and completely unknown transition probabilities as two special cases. Firstly, by use of parameter-dependent Lyapunov function and free-connection weighting matrices, the problem of finite-time stabilization of stochastic Markov jump systems with actuator saturation was analyzed and sufficient conditions for finite-time stability were proposed. The procedure of solution for the non-fragile finite-time state feedback controller and the maximum domain of attraction were built in the form of linear matrix inequalities (LMIs). Finally, a numerical example about four modes with Markov jump parameters was given to show the validity of the results.

Key words: actuator saturation, Markov jump systems, partly known transition probabilities, finite-time stabilization, non-fragile state feedback controller

中图分类号: