东北大学学报:自然科学版 ›› 2016, Vol. 37 ›› Issue (9): 1235-1240.DOI: 10.12068/j.issn.1005-3026.2016.09.005
林永杰1, 邹难2
LIN Yong-jie1, ZOU Nan2
摘要: 出租车系统作为城市交通运输系统的重要组成部分,其宏观规划和调度管理的合理性决定了出租车服务质量.本文主要研究出租车乘客出行需求估计及预测,为出租车规划和实时调度提供数据支持.首先,分析了出租车定位系统和计费系统,改进了传统出租车需求网格划分方法,考虑了地形、建筑群和道路网络特征,保持了网格自身出行特性的完整性.其次,根据实时收集的出租车数据,建立了易于计算的出行需求估计方法.最后,以实际数据为基础,对影响短时出行量的主要变量进行了相关性分析,提出了基于人工神经网络的短时需求预测模型,根据相关性分析确定了模型结构.以实际获取的出租车数据为例,验证了提出的需求估计和预测模型.结果证明:相比于传统自回归滑动平均模型,提出的人工神经网络模型其平均绝对误差百分比提高了32%.此外,人工神经网络模型的绝对误差百分比超过50%的概率低于10%,而自回归滑动平均模型高达23%.
中图分类号: