东北大学学报:自然科学版 ›› 2020, Vol. 41 ›› Issue (9): 1262-1267.DOI: 10.12068/j.issn.1005-3026.2020.09.008

• 材料与冶金 • 上一篇    下一篇

基于机器学习和遗传算法的高炉参数预测与优化

李壮年1, 储满生1, 柳政根1, 李宝峰2   

  1. (1. 东北大学 冶金学院, 辽宁 沈阳110819; 2. 山西太钢不锈钢股份有限公司 炼铁厂, 山西 太原030003)
  • 收稿日期:2019-10-11 修回日期:2019-10-11 出版日期:2020-09-15 发布日期:2020-09-15
  • 通讯作者: 李壮年
  • 作者简介:李壮年(1986-),男,陕西绥德人,东北大学博士研究生; 储满生(1973-),男,安徽岳西人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金联合基金资助项目(U1808212).

Prediction and Optimization of Blast Furnace Parameters Based on Machine Learning and Genetic Algorithm

LI Zhuang-nian1, CHU Man-sheng1, LIU Zheng-gen1, LI Bao-feng2   

  1. 1.School of Metallurgy, Northeastern University, Shenyang 110819, China; 2.Ironmaking Plant, Shanxi Taigang Stainless Iron Shares Co., Ltd., Taiyuan 030003, China.
  • Received:2019-10-11 Revised:2019-10-11 Online:2020-09-15 Published:2020-09-15
  • Contact: CHU Man-sheng
  • About author:-
  • Supported by:
    -

摘要: 针对目前高炉炼铁模型精度不高问题,提出建立高炉生产过程中精确的多目标优化模型.首先对高炉的海量数据进行了数据预处理,其次采用支持向量机、随机森林、梯度提升树、XGBoost、LightGBM、人工神经网络6种机器学习算法对高炉焦比、K值进行了预测,并采用特征工程和超参调优对机器学习预测进行了优化,最后采用新的集成学习方法进行预测.预测结果不仅精准度高而且具有很好的鲁棒性.在机器学习的基础之上,采用NSGA-Ⅱ遗传算法对高炉参数进行了多目标优化分析,得到了Pareto最优解,高炉操作者可以根据该多目标优化结果针对不同的需求选择相应的控制参数.

关键词: 高炉, 机器学习, 集成学习, 遗传算法, 参数预测

Abstract: To address the problem of low accuracy in the blast furnace ironmaking model, a precise multi-objective optimization model for the blast furnace production process was established.Firstly, the massive data from blast furnace were pre-processed before machine learning. Then, six kind of machine learning algorithms were used to predict coke ratio and K value, including support vector machine, random forest, gradient boosting regression tree, XGBoost, LightGBM and artificial neural network.Feature engineering and hyper-parameter tuning were used to optimize the prediction results from machine learning.Finally, the new ensemble learning method was used for prediction.Consequently, the proposed machine learning method has not only high accuracy, but also good robustness.Based on the prediction from machine learning, multi-objective optimization analysis of blast furnace parameters is further carried out by NSGA-Ⅱ algorithm so that Pareto optimal solution can be obtained. Therefore, the blast furnace operator can select the corresponding control parameters, according to these multi-objective optimization results.

Key words: blast furnace (BF), machine learning, ensemble learning, genetic algorithm, parameter prediction

中图分类号: