东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (10): 1369-1375.DOI: 10.12068/j.issn.1005-3026.2021.10.001

• 信息与控制 •    下一篇

基于实例迁移的磨煤机过程监测建模

常玉清, 赵炜炜, 刘乐源, 康孝云   

  1. (东北大学 信息科学与工程学院, 辽宁 沈阳110819)
  • 修回日期:2021-03-18 接受日期:2021-03-18 发布日期:2021-10-22
  • 通讯作者: 常玉清
  • 作者简介:常玉清(1973-),女,辽宁沈阳人,东北大学教授.
  • 基金资助:
    国家自然科学基金资助项目(61873053).

Modeling of Coal Mill Process Monitoring Based on Instance-based Transfer Learning

CHANG Yu-qing, ZHAO Wei-wei, LIU Le-yuan, KANG Xiao-yun   

  1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
  • Revised:2021-03-18 Accepted:2021-03-18 Published:2021-10-22
  • Contact: ZHAO Wei-wei
  • About author:-
  • Supported by:
    -

摘要: 当工业生产过程数据匮乏时,很难利用基于数据统计的方法建立其过程监测模型,这给过程监测的准确性和及时性带来很大影响,迁移学习为解决上述问题提供了有效的途径.针对目标域磨煤机过程数据较少的情况,在源域磨煤机数据的基础上,建立基于实例迁移高斯混合模型(Gaussian mixture model,GMM)的目标域磨煤机过程监测模型.利用实例迁移对源域生产过程和目标域过程数据进行权重分配,通过改进的高斯混合模型算法得到最佳高斯组分数目和对应的模型参数,应用过程监测的全局概率指标实现磨煤机过程的跨域监测.磨煤机过程的研究结果验证了所提出方法的可行性和有效性.

关键词: 过程监测;高斯混合模型;实例迁移;权重分配;全局概率指标

Abstract: Considering the shortage of industrial process data, process monitoring model based on data statistics is difficultly established, resulting in an adverse impact on the accuracy and timeliness of monitoring. Transfer learning provides an effective way for the above situation. In view of the fact that the coal mill process data in the target domain is less, on the basis of the source domain coal mill data, a target domain coal mill process monitoring model based on the instance-based transfer Gaussian mixture model(GMM)is established. The instance-based transfer learning is used to assign weight of source domain production process and target domain process data, using the modified algorithm of GMM to automatically optimize the number of Gaussian components and corresponding model parameters. The global probability index of the process monitoring is applied to realize the cross-domain monitoring of the coal mill process. The research results of the coal mill process verify the feasibility and effectiveness of the proposed method.

Key words: process monitoring; Gaussian mixture model; instance-based transfer learning; weight distribution; global probability index

中图分类号: