东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (10): 1425-1434.DOI: 10.12068/j.issn.1005-3026.2024.10.008
• 机械工程 • 上一篇
收稿日期:
2023-05-19
出版日期:
2024-10-31
发布日期:
2024-12-31
通讯作者:
姚红良
作者简介:
贾如玉(1998-),女,河北张家口人,东北大学硕士研究生基金资助:
Ru-yu JIA, Hong-liang YAO(), Ya-qiang CHEN, Chen-wei TANG
Received:
2023-05-19
Online:
2024-10-31
Published:
2024-12-31
Contact:
Hong-liang YAO
About author:
YAO Hong-liang,E-mail:hlyao@mail.neu.edu.cn摘要:
基于点阵结构比刚度高、轻质量和设计性强等优点,提出在点阵结构内部填充黏弹性阻尼材料,设计了新型细长支杆-阻尼填充点阵支杆,该结构在具有足够承载能力的基础上拥有较高的阻尼性能.利用有限元方法对点阵支杆和阻尼填充支杆进行动力学分析,并通过响应面方法建立了一阶共振频率对应的动刚度峰值的响应面近似模型,分析了结构参数对动力学特性的影响,使用遗传算法对动刚度峰值进行了优化,确定了在给定结构参数范围内减振性能最好的结构尺寸参数.最后实验证明阻尼填充点阵支杆的加速度响应幅值降低了57.14%,验证其优越的减振性能.
中图分类号:
贾如玉, 姚红良, 陈亚强, 唐陈伟. 新型细长支杆振动抑制方法[J]. 东北大学学报(自然科学版), 2024, 45(10): 1425-1434.
Ru-yu JIA, Hong-liang YAO, Ya-qiang CHEN, Chen-wei TANG. Method for Vibration Suppressing of New Type of Slender Support Rods[J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1425-1434.
因素 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
H1 | 0.5 | 2 | 3.5 |
H2 | 0.5 | 2 | 3.5 |
D | 0.5 | 1.25 | 2 |
表1 响应面实验结构参数取值范围 (mm)
Table 1 Range of the response surface test parameters
因素 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
H1 | 0.5 | 2 | 3.5 |
H2 | 0.5 | 2 | 3.5 |
D | 0.5 | 1.25 | 2 |
阶次 | 固有频率/Hz | 损耗因子/% | ||
---|---|---|---|---|
实心 | 优化后 | 实心 | 优化后 | |
一 | 368.25 | 326.61 | 0.03 | 0.103 9 |
二 | 368.25 | 326.72 | 0.03 | 0.103 9 |
三 | 2 117.1 | 1 839.9 | 0.03 | 0.134 6 |
四 | 2 117.1 | 1 840.5 | 0.03 | 0.134 6 |
五 | 2 653.9 | 2 364.8 | 0.03 | 0.089 9 |
六 | 4 277 | 3 642.4 | 0.03 | 0.338 5 |
表2 实心支杆和优化后阻尼填充点阵支杆模态参数对比
Table 2 Comparison of modal parameters between the solid support and the optimized damping filled lattice support rod
阶次 | 固有频率/Hz | 损耗因子/% | ||
---|---|---|---|---|
实心 | 优化后 | 实心 | 优化后 | |
一 | 368.25 | 326.61 | 0.03 | 0.103 9 |
二 | 368.25 | 326.72 | 0.03 | 0.103 9 |
三 | 2 117.1 | 1 839.9 | 0.03 | 0.134 6 |
四 | 2 117.1 | 1 840.5 | 0.03 | 0.134 6 |
五 | 2 653.9 | 2 364.8 | 0.03 | 0.089 9 |
六 | 4 277 | 3 642.4 | 0.03 | 0.338 5 |
支杆类型 | 固有频率/Hz | 阻尼比 |
---|---|---|
实心支杆 | 357.40 | 0.018 7 |
阻尼填充点阵支杆 | 307.98 | 0.032 6 |
表3 第一阶模态实验结果
Table 3 Results of the first?order modal test
支杆类型 | 固有频率/Hz | 阻尼比 |
---|---|---|
实心支杆 | 357.40 | 0.018 7 |
阻尼填充点阵支杆 | 307.98 | 0.032 6 |
1 | Hua J, Zheng S, Zhong M,et al.Recent development of a CFD-wind tunnel correlation study based on CAE-AVM investigation[J].Chinese Journal of Aeronautics,2018,31(3):419-428. |
2 | 周成刚,李东旭.卫星大挠性桁架结构振动抑制试验研究[J].航天控制,2009,27(2):45-49. |
Zhou Cheng‑gang, Li Dong‑xu.Experiment of vibration suppression for large flexible space truss structures of satellite[J].Aerospace Control,2009,27(2):45-49. | |
3 | 刘立佳,刘献礼,许成阳,等.减振镗杆振动控制研究综述[J].哈尔滨理工大学学报,2014,19(2):12-18. |
Liu Li‑jia, Liu Xian‑li, Xu Cheng‑yang,et al.Review of damping boring bar vibration control[J].Journal of Harbin University of Science and Technology,2014,19(2):12-18. | |
4 | 何定健,李建勋,王勇.深孔加工关键技术及发展[J].航空制造技术,2008(21):90-93,97. |
He Ding‑jian, Li Jian‑xun, Wang Yong.Key technology and development of deep hole machining[J].Aeronautical Manufacturing Technology,2008(21):90-93,97. | |
5 | Gao P X, Zhai J Y, Qu F Z,et al.Vibration and damping analysis of aerospace pipeline conveying fluid with constrained layer damping treatment[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2018,232(8):1529-1541. |
6 | 盖同锡.深孔加工中振动的产生原因和消除方法[J].科技创新导报,2014(11):48-49. |
Gai Tong‑xi.Reasons and suppression methods of vibration machining procedures of deep hole[J].Science and Technology Innovation Herald,2014(11):48-49. | |
7 | Liu W, Zhou M D, Wen Z Q,et al.An active damping vibration control system for wind tunnel models[J].Chinese Journal of Aeronautics,2019,32(9):2109-2120. |
8 | Kou X P, Dai Y K, Yang Z C,et al.Experimental research on a multi‑modal active damping system for transonic wind‑tunnel tests[J].Journal of Vibration Engineering & Technologies,2021,9(7):1591-1601. |
9 | Hsu S, Mor M, Stirling B,et al.Reduction of dynamic response of a wind tunnel sting mount using co‑cured composite and viscoelastic materials[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition,Orlando,2010,15375-15382. |
10 | Pan J H, Liu Z Q, Kou X P,et al.Constrained layer damping treatment of a model support sting[J].Chinese Journal of Aeronautics,2021,34(8):58-64. |
11 | Maconachie T, Leary M, Lozanovski B,et al.SLM lattice structures:properties,performance,applications and challenges[J].Materials & Design,2019(83):108137. |
12 | Salari‑Sharif L, Schaedler T A, Valdevit L.Energy dissipation mechanisms in hollow metallic microlattices[J].Journal of Materials Research,2014,29(16):1755-1770. |
13 | Mazur M, Leary M, Sun S J,et al.Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)[J].International Journal of Advanced Manufacturing Technology,2016,84(5/6/7/8):1391-1411. |
14 | Scalzo F, Totis G, Vaglio E,et al.Experimental study on the high‑damping properties of metallic lattice structures obtained from SLM[J].Precision Engineering‑Journal of the International Societies for Precision Engineering and Nanotechnology,2021,71:63-77. |
15 | 霍明政,陈婕,杨琴,等.杆径对激光选区熔化NiTi合金点阵结构动态减振特性的影响[J].中国激光,2022,49(14):259-268. |
Huo Ming‑zheng, Chen Jie, Yang Qin,et al.Influence of rod diameter on dynamic vibration damping characteristics of NiTi alloy lattice structures fabraicated by selectice laser melting[J].China Journal Lasers,2022,46(14):259-268. | |
16 | Rosa F, Manzoni S, Casati R.Damping behavior of 316L lattice structures produced by selective laser melting[J].Materials & Design,2018,160:1010-1018. |
17 | Huang Z C, Qin Z Y, Chui F L.A compression shear mixed finite element model for vibration and damping analysis of viscoelastic sandwich structures[J].Journal of Sandwich Structures & Materials,2019,21(6):1775-1798. |
18 | Kliem M, Hogsberg J, Vanwalleghem J,et al.Damping analysis of cylindrical composite structures with enhanced viscoelastic properties[J].Applied Composite Materials,2019,26(1):85-113. |
19 | Sun W, Wang Z, Yan X F,et al.Inverse identification of the frequency‑dependent mechanical parameters of viscoelastic materials based on the measured FRFs[J].Mechanical Systems and Signal Processing,2018,98:816-833. |
20 | Huang Z C, Wang X G, Wu N X,et al.A finite element model for the vibration analysis of sandwich beam with frequency‑dependent viscoelastic material core[J].Materials,2019,12(20):3390. |
21 | Zhang J, Yao D, Shen M L,et al.Temperature‑and frequency‑dependent vibroacoustic response of aluminium extrusions damped with viscoelastic materials[J].Composite Structures,2021,272:114148. |
[1] | 郝博, 张鹏, 朱枳名. 变F-RD型点阵结构的参数分析与验证[J]. 东北大学学报(自然科学版), 2024, 45(9): 1294-1300. |
[2] | 张家豪, 邹平, 魏事宇, 梁付强. 单激励三维超声车削加工技术的实验研究[J]. 东北大学学报(自然科学版), 2023, 44(8): 1152-1159. |
[3] | 窦金鑫, 姚红良, 曹焱博, 郭俞良. BNES对转子系统扭转振动抑制的理论和试验研究[J]. 东北大学学报(自然科学版), 2023, 44(6): 790-798. |
[4] | 赵文, 孙远, 柏谦, 夏云朋. 小直径管幕工法横导洞施工现场试验及参数优化[J]. 东北大学学报(自然科学版), 2023, 44(3): 432-439. |
[5] | 曹文欣, 赵文, 路博, 贾鹏蛟. 基于模糊数学的STS管幕结构的连接参数优化[J]. 东北大学学报(自然科学版), 2022, 43(2): 258-266. |
[6] | 张晓虎, 张晟, 赵亮, 董辉. 烧结镁砂煅烧竖炉内气固传热特性数值分析[J]. 东北大学学报(自然科学版), 2022, 43(1): 40-47. |
[7] | 李凡杰 , 李小彭 , 沃旭, 闻邦椿. 混联汽车悬架系统减振性能分析与优化[J]. 东北大学学报(自然科学版), 2021, 42(8): 1098-1104. |
[8] | 贾鹏蛟, 史培新, 关永平, 赵文. STS管幕结构横向抗弯刚度计算模型及参数优化[J]. 东北大学学报(自然科学版), 2021, 42(8): 1159-1165. |
[9] | 张路凯, 冯雪松. 状态空间下列车区段晚点预测误差控制[J]. 东北大学学报(自然科学版), 2021, 42(4): 494-501. |
[10] | 李小彭 , 李凡杰, 杨舲雪, 刘晓龙. 车辆悬架系统的优化设计与动力学特性分析[J]. 东北大学学报:自然科学版, 2020, 41(8): 1097-1102. |
[11] | 曹焱博, 李之傲, 韩金超, 姚红良. 非光滑NES在转子-叶片系统振动抑制中的应用[J]. 东北大学学报:自然科学版, 2020, 41(8): 1103-1110. |
[12] | 李明, 于天彪, 张荣闯, 王宛山. 基于石墨烯强化MQL的GH4169合金铣削表面质量研究[J]. 东北大学学报:自然科学版, 2020, 41(3): 387-392. |
[13] | 郝国成, 锅娟, 谭淞元, 曾佐勋5. 混沌参数优化RBF算法的震前ENPEMF信号强度趋势预测[J]. 东北大学学报:自然科学版, 2020, 41(12): 1692-1698. |
[14] | 于天彪, 宋博学, 郗文超, 马哲伦. 激光熔覆工艺参数对熔覆层形貌的影响及优化[J]. 东北大学学报:自然科学版, 2019, 40(4): 537-542. |
[15] | 姚红良, 张钦, 杨沛然, 闻邦椿. 分段线性刚度非线性能量阱的参数优化方法[J]. 东北大学学报:自然科学版, 2019, 40(12): 1732-1738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||