东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (12): 1717-1725.DOI: 10.12068/j.issn.1005-3026.2024.12.006

• 信息与控制 • 上一篇    

智能反射面辅助认知无人机网络的鲁棒安全通信方法

李安(), 郭涛, 黎豪, 洪升   

  1. 南昌大学 信息工程学院,江西 南昌 330031
  • 收稿日期:2023-07-03 出版日期:2024-12-10 发布日期:2025-03-18
  • 通讯作者: 李安
  • 作者简介:李 安(1980-),女,湖南邵阳人,南昌大学教授,博士生导师.
  • 基金资助:
    赣鄱俊才支持计划——主要学科学术和技术带头人培养计划领军人才项目(20232BCJ22005);国家自然科学基金资助项目(62341120)

Robust Secure Communication Method for Intelligent Reflecting Surface-Assisted Cognitive UAV Network

An LI(), Tao GUO, Hao LI, Sheng HONG   

  1. School of Information Engineering,Nanchang University,Nanchang 330031,China.
  • Received:2023-07-03 Online:2024-12-10 Published:2025-03-18
  • Contact: An LI

摘要:

针对认知无人机网络中,作为次用户发射机的无人机难以准确获取窃听信道的信道状态信息而使次级系统安全性能下降的难题,提出一种利用智能反射面(intelligent reflecting surface,IRS)辅助无人机认知通信增强次用户安全传输性能的鲁棒方法.在满足主用户干扰温度约束的条件下,建立确定性模型描述窃听信道的信道状态信息(channel state information,CSI)的不确定性,联合优化智能反射面的相移矩阵、无人机的飞行轨迹和发射功率,最大化次用户的最差平均保密速率.并针对该优化问题的非凸性,基于交替优化、连续凸近似、S-Procedure和半定松弛方法,提出了一个有效的三阶段迭代算法.实验结果表明,相比于非鲁棒方案,所提出的鲁棒方案可以显著提升次用户的安全传输性能.

关键词: 认知无人机网络, 安全通信, 智能反射面, 交替优化, 连续凸近似

Abstract:

To address the problem that it is difficult for the secondary unmanned aerial vehicle (UAV) to acquire the accurate channel state information (CSI) of the eavesdropping channel in UAV cognitive radio systems, which reduces the security performance of the secondary system, this paper proposes a robust method to enhance the security transmit performance of the secondary user (SU) by using intelligent reflecting surface (IRS) to assist UAV cognitive communication. Under the constraints of the interference temperature of the primary user (PU), a deterministic model is established to describe the uncertainty of the CSI of the eavesdropping channel, and the phase shift matrix of IRS, the flight trajectory and transmit power of the UAV are jointly optimized to maximize the average worst‑case secrecy rate of the SU. To tackle the non‑convexity of the formulated optimization problem, an effective three‑stage iterative algorithm is presented based on alternating optimization, successive convex approximation, S-Procedure, and semi‑definite relaxation methods. The simulation results show that compared to non‑robust scheme, the proposed robust scheme can significantly improve the secure performance of the SU.

Key words: cognitive UAV network, secure communication, intelligent reflecting surface, alternating optimization, successive convex approximation

中图分类号: