东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (12): 1798-1804.DOI: 10.12068/j.issn.1005-3026.2024.12.015
• 资源与土木工程 • 上一篇
收稿日期:
2023-12-19
出版日期:
2024-12-10
发布日期:
2025-03-18
通讯作者:
许开立
作者简介:
许加玲(1999-),女,山东日照人,东北大学硕士研究生
Jia-ling XU, Kai-li XU(), Bo LIU
Received:
2023-12-19
Online:
2024-12-10
Published:
2025-03-18
Contact:
Kai-li XU
摘要:
为探究碳酸氢盐对豆粕粉尘爆炸的抑爆特性,选取NaHCO3,KHCO3,NH4HCO3 3种碳酸氢盐作为抑爆粉体,用最大爆炸压力Pex、最大爆炸压力上升速率(dP/dt)ex和爆炸指数Kst等参数分析了碳酸氢盐对豆粕粉尘爆炸的抑制效果.结果表明,质量浓度为400 g/m³ 的豆粕粉尘爆炸特性参数最高,最大爆炸压力为0.763 MPa,最大爆炸压力上升速率为24.8 MPa/s,爆炸指数为6.7 MPa·m/s.随着碳酸氢盐粉末质量分数的增加,爆炸特性参数呈现下降趋势,且抑制效果不断增强.同一条件下,抑爆性能NH4HCO3 >KHCO3>NaHCO3.结合抑爆粉体热重分析及红外光谱分析,探究了3种抑爆粉体的抑爆机理及不同离子导致的差异性原因.
中图分类号:
许加玲, 许开立, 刘博. 碳酸氢盐抑制豆粕粉尘爆炸特性实验研究[J]. 东北大学学报(自然科学版), 2024, 45(12): 1798-1804.
Jia-ling XU, Kai-li XU, Bo LIU. Experimental Study on the Characteristics of Bicarbonate Inhibiting Soybean Meal Dust Explosion[J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1798-1804.
图6 添加不同质量分数抑爆粉体的混合粉尘爆炸压力-时间进程图(a)—NaHCO3; (b)—KHCO3 ; (c)—NH4HCO3.
Fig.6 Explosion pressure time diagram of mix dust with different mass fraction of explosion suppression powders
图9 添加不同质量分数抑爆粉体达到最大爆炸压力上升速率时间
Fig.9 Time to achieve maximum explosion pressure rise rate by adding different mass fractions of explosive suppression powders
1 | 陈刚,张晓蕾,徐帅,等.我国2005—2020年粉尘爆炸事故统计分析[J].中国安全科学学报,2022,32(8):76-83. |
Chen Gang, Zhang Xiao‑lei, Xu Shuai,et al.Statistical analysis on dust explosion accidents occurring in China during 2005—2022[J].Journal of Safety Science and Technology,2022,32(8):76-83. | |
2 | 覃小玲,李晓泉.粮食粉尘爆炸事故统计分析[J].工业安全与环保,2020,46(5):78-82. |
Tan Xiao‑ling, Li Xiao‑quan.Statistical analysis of grain dust explosion accidents[J].Industrial Safety and Environmental Protection,2020,46(5):78-82. | |
3 | Wei M C, Cheng Y C, Lin Y Y,et al.Applications of dust explosion hazard and disaster prevention technology[J].Journal of Loss Prevention in the Process Industries,2020,68:61-73. |
4 | Wang Y, Lin C D, Qi Y Q,et al.Suppression of polyethylene dust explosion by sodium bicarbonate[J].Powder Technology,2020,367:206-212. |
5 | Yan X Q, Yu J L.Dust explosion incidents in China[J].Process Safety Progress,2012,31(2):187-189. |
6 | 鲁昆仑,陈晓坤,王媛媛,等.碳酸氢钠及其固态分解产物对玉米淀粉爆炸抑制实验研究[J].中国安全生产科学技术,2021,17(9):126-131. |
Lu Kun‑lun, Chen Xiao‑kun, Wang Yuan‑yuan,et al. Experimental study on inhibition of sodium bicarbonate and its solid decomposition products on explosion of corn starch[J].Journal of Safety Science and Technology,2021,17(9):126-131. | |
7 | Jiang H P, Bi M S, Peng Q K,et al.Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4 [J].Renewable Energy,2020,147:2046-2055. |
8 | Jiang H P, Bi M S, Li B,et al.Flame inhibition of aluminum dust explosion by NaHCO3 and NH4H2PO4 [J].Combustion and Flame,2019,200:97-114. |
9 | Chen X F, Zhang H M, Chen X,et al.Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution[J].Journal of Loss Prevention in the Process Industries,2017,49:905-911. |
10 | Wang Z, Meng X B, Yan K,et al.Study on the inhibition of Al-Mg alloy dust explosion by modified Mg(OH)2 [J].Powder Technology,2021,384:284-296. |
11 | Eckhoff R K.Does the dust explosion risk increase when moving from μm‑particle powders to powders of nm‑particles?[J].Journal of Loss Prevention in the Process Industries,2012,25:448-459. |
12 | Eckhoff R K.Influence of dispersibility and coagulation on the dust explosion risk presented by powders consisting of nm‑particles[J].Powder Technology,2013,239:223-230. |
13 | Xiang B M, Ke Y, Zhi C P,et al.Study on mechanism and dynamics of inert powder explosion inhibitor inhibiting aluminum powder explosion[J].Advanced Powder Technology,2022,11:103773. |
14 | Cheng Y C, Huang H C, Luo J W,et al.Evaluation of the dust potential hazard of thermal power plants through coal dust combustion and explosion characteristics[J].Journal of Thermal Analysis and Calorimetry,2021,144(2):575-585. |
15 | Han O S, Lee J S.Pyrolysis characteristic and ignition energy of high‑density polyethylene powder[J].Journal of The Korean Institute of Gas,2014,18(3):31-37. |
16 | Reding N S, Shiflett M B.Characterization of thermal stability and heat absorption for suppressant Agent/Combustible dust mixtures via thermogravimetric Analysis/Differential scanning calorimetry[J].Industrial & Engineering Chemistry Research,2019,58(11):4674-4687. |
17 | Zhao Q, Chen X F, Dai H M,et al.Inhibition of diammonium phosphate on the wheat dust explosion[J].Powder Technology,2020,367:751-761. |
18 | Cao X Y, Bi M S, Ren J J,et al.Experimental research on explosion suppression affected by ultrafine water mist containing different additives[J].Journal of Hazardous Materials,2019,368(2):613-620. |
[1] | 李刚, 周雷, 张晓宇, 张凯. 连通设备粉尘爆炸泄压面积确定方法[J]. 东北大学学报(自然科学版), 2024, 45(2): 276-281. |
[2] | 阮萌, 许开立, 鲁佰成, 刘博. 低浓度酒精气氛下发酵废醪浮尘的爆炸危险性研究[J]. 东北大学学报(自然科学版), 2023, 44(7): 1026-1033. |
[3] | 李刚, 刘宗阳, 常伟达, 张晓宇. 碳素材料粉尘着火爆炸实验研究[J]. 东北大学学报(自然科学版), 2023, 44(2): 298-304. |
[4] | 李刚, 康瑾, 崔震, 胡朋. 粉尘隔爆翻板阀功能实验与模拟研究[J]. 东北大学学报(自然科学版), 2021, 42(8): 1166-1173. |
[5] | 李刚, 崔震, 胡朋, 倪磊. 双侧分支结构管道内粉尘爆炸传播规律[J]. 东北大学学报(自然科学版), 2021, 42(5): 734-740. |
[6] | 李刚, 张晓宇, 黄庭川, 张洋洋. 变径管道中粉尘爆炸传播实验与模拟[J]. 东北大学学报(自然科学版), 2021, 42(11): 1634-1640. |
[7] | 李刚, 胡朋, 张洋洋, 倪磊. 不同弯型管道内粉尘爆炸传播规律[J]. 东北大学学报:自然科学版, 2020, 41(9): 1316-1320. |
[8] | 蔡景治, 苑春苗, 孟凡一, 李畅. 微米和纳米钛粉尘层着火蔓延特性研究[J]. 东北大学学报:自然科学版, 2020, 41(1): 137-142. |
[9] | 白丽梅, 邓玉芬, 韩跃新, 赵文青. 微细菱镁矿热分解过程及动力学[J]. 东北大学学报:自然科学版, 2018, 39(3): 398-403. |
[10] | 卜亚杰, 苑春苗, 郝剑涛, 李畅. 电火花作用下粉尘云着火的延迟时间[J]. 东北大学学报:自然科学版, 2018, 39(11): 1658-1662. |
[11] | 于立富, 李刚, 潘超, 苑春苗. 中国油页岩粉尘爆炸特性实验研究[J]. 东北大学学报:自然科学版, 2016, 37(8): 1203-1206. |
[12] | 姚锡文, 许开立, 闫放, 何钟琦. 不同农业生物质废弃物的热解特性及动力学对比[J]. 东北大学学报:自然科学版, 2016, 37(11): 1593-1597. |
[13] | 喻健良, 闫兴清. 高静态动作压力下粉尘爆炸泄放标准的可靠性[J]. 东北大学学报:自然科学版, 2015, 36(9): 1316-1320. |
[14] | 苑春苗;李畅;李刚;张培红;. 氮气气氛下玉米淀粉热分解动力学参数[J]. 东北大学学报(自然科学版), 2012, 33(4): 584-587. |
[15] | 董艳伍;姜周华;肖志新;李正邦;. 电渣重熔用渣料烘烤过程的失重现象[J]. 东北大学学报(自然科学版), 2010, 31(8): 1141-1144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||