东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (1): 134-144.DOI: 10.12068/j.issn.1005-3026.2025.20230234
• 资源与土木工程 • 上一篇
杨钧羽1, 李明1, 孙爽2, 位东升3
收稿日期:
2023-08-11
出版日期:
2025-01-15
发布日期:
2025-03-25
作者简介:
杨钧羽(1999—),男,贵州天柱人,东北大学硕士研究生基金资助:
Jun-yu YANG1, Ming LI1, Shuang SUN2, Dong-sheng WEI3
Received:
2023-08-11
Online:
2025-01-15
Published:
2025-03-25
摘要:
在役桥梁的安全状态受多种因素影响且评价指标繁多,为有效评价其安全状态,基于最优权重和模糊理论,提出了一种考虑多因素影响的桥梁安全评估方法.该方法通过数值分析得到桥梁在多种预设工况下对应监测点的力学响应,依据数值计算结果和现行规范确定桥梁的安全等级划分标准;引入隶属度函数,建立各指标的模糊评价向量;分别采用模糊层次分析法和熵权法确定各指标的主观权重和客观权重,并通过偏好系数进行组合赋权得到最优权重;采用模糊综合评价方法依据最大隶属度原则确定桥梁的安全等级.以某钢拱桥为例,计算了24种预设工况下的安全等级;同时依据该桥一周内的实时监测数据,得到该时段内桥梁的动态安全等级.结果表明:该评估方法能够充分考虑多种主客观因素的影响并依据实时监测数据动态评价桥梁的安全状态.
中图分类号:
杨钧羽, 李明, 孙爽, 位东升. 基于最优权重和模糊理论的钢拱桥安全评估方法[J]. 东北大学学报(自然科学版), 2025, 46(1): 134-144.
Jun-yu YANG, Ming LI, Shuang SUN, Dong-sheng WEI. Safety Assessment Method for Steel Arch Bridge Based on Optimal Weights and Fuzzy Theory[J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 134-144.
影响因素 | 工况 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
等效车辆数 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 48 | 100 | 140 | 1 180 | 1 415 | 2 000 |
风速/(m·s-1) | 0 | 0 | 37.6 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 37.6 | 0 | 0 | 0 | 0 | 0 |
整体升降温/℃ | 0 | 20 | 0 | 20 | -20 | -20 | 0 | 0 | 20 | 20 | -20 | -20 | 0 | 0 | 20 | 20 | -20 | -20 | 0 | 0 | 0 | 0 | 0 | 0 |
表1 工况组合
Table 1 Combination of case conditions
影响因素 | 工况 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
等效车辆数 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 48 | 100 | 140 | 1 180 | 1 415 | 2 000 |
风速/(m·s-1) | 0 | 0 | 37.6 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 0 | 37.6 | 37.6 | 0 | 0 | 0 | 0 | 0 |
整体升降温/℃ | 0 | 20 | 0 | 20 | -20 | -20 | 0 | 0 | 20 | 20 | -20 | -20 | 0 | 0 | 20 | 20 | -20 | -20 | 0 | 0 | 0 | 0 | 0 | 0 |
安全等级 | 状态 | 状况 |
---|---|---|
Ⅰ | 完好 | 功能完好 |
Ⅱ | 良好 | 轻微损伤,对桥梁运营无影响 |
Ⅲ | 合格 | 中等损伤,尚能维持正常使用 |
Ⅳ | 不合格 | 较大缺损,不能保证正常使用 |
Ⅴ | 危险 | 严重缺损,不能正常使用 |
表2 桥梁安全等级状态
Table 2 Bridge safety level status
安全等级 | 状态 | 状况 |
---|---|---|
Ⅰ | 完好 | 功能完好 |
Ⅱ | 良好 | 轻微损伤,对桥梁运营无影响 |
Ⅲ | 合格 | 中等损伤,尚能维持正常使用 |
Ⅳ | 不合格 | 较大缺损,不能保证正常使用 |
Ⅴ | 危险 | 严重缺损,不能正常使用 |
指标 | LⅠ | LⅡ | LⅢ | LⅣ | LⅤ |
---|---|---|---|---|---|
52.66 | 87.05 | 121.43 | 155.82 | 190.20 | |
31.52 | 105.64 | 179.76 | 253.88 | 328.00 | |
204.99 | 371.74 | 538.49 | 705.24 | 872.00 | |
29.92 | 104.44 | 178.96 | 253.48 | 328.00 | |
50.52 | 85.89 | 121.26 | 156.63 | 192.00 | |
9.78 | 36.89 | 63.99 | 91.10 | 118.20 | |
6.10 | 97.10 | 188.00 | 279.00 | 370.00 |
表3 安全等级划分
Table 3 Classification of safety level
指标 | LⅠ | LⅡ | LⅢ | LⅣ | LⅤ |
---|---|---|---|---|---|
52.66 | 87.05 | 121.43 | 155.82 | 190.20 | |
31.52 | 105.64 | 179.76 | 253.88 | 328.00 | |
204.99 | 371.74 | 538.49 | 705.24 | 872.00 | |
29.92 | 104.44 | 178.96 | 253.48 | 328.00 | |
50.52 | 85.89 | 121.26 | 156.63 | 192.00 | |
9.78 | 36.89 | 63.99 | 91.10 | 118.20 | |
6.10 | 97.10 | 188.00 | 279.00 | 370.00 |
指标 | |||||||
---|---|---|---|---|---|---|---|
3 382.17 | 728.10 | 143.86 | 720.30 | 3 197.35 | 5 442.53 | 4.83e-16 |
表4 比例参数α取值
Table 4 Values of proportional parameter α
指标 | |||||||
---|---|---|---|---|---|---|---|
3 382.17 | 728.10 | 143.86 | 720.30 | 3 197.35 | 5 442.53 | 4.83e-16 |
指标 | 工况1 | 工况19 | 工况22 |
---|---|---|---|
A1 | |||
A5 | |||
A17 | |||
A43 | |||
A66 | |||
A113 |
表5 指标评价向量
Table 5 Index evaluation vector
指标 | 工况1 | 工况19 | 工况22 |
---|---|---|---|
A1 | |||
A5 | |||
A17 | |||
A43 | |||
A66 | |||
A113 |
1 | He Z G, Li W T, Salehi H,et al.Integrated structural health monitoring in bridge engineering[J].Automation in Construction,2022,136:104168. |
2 | Sun L M, Shang Z Q, Xia Y,et al.Review of bridge structural health monitoring aided by big data and artificial intelligence:from condition assessment to damage detection[J].Journal of Structural Engineering,2020,146(5):04020073. |
3 | 孙利民,尚志强,夏烨.大数据背景下的桥梁结构健康监测研究现状与展望[J].中国公路学报,2019,32(11):1-20. |
Sun Li‑min, Shang Zhi‑qiang, Xia Ye.Development and prospect of bridge structural health monitoring in the context of big data[J]China Journal of Highway and Transport,2019,32(11):1-20. | |
4 | Manzini N, Orcesi A, Thom C,et al.Machine learning models applied to a GNSS sensor network for automated bridge anomaly detection[J].Journal of Structural Engineering,2022,148(11):04022171. |
5 | Zhu Q X, Wang H, Spencer B F Jr,et al.Mapping of temperature‑induced response increments for monitoring long‑span steel truss arch bridges based on machine learning[J].Journal of Structural Engineering,2022,148(5):04022034. |
6 | Sun P, Hou X M, Zheng W Z,et al.Risk assessment for bridge structures against blast hazard via a fuzzy‑based framework[J].Engineering Structures,2021,232:111874. |
7 | Peng J X, Yang Y M, Bian H B,et al.Optimisation of maintenance strategy of deteriorating bridges considering sustainability criteria[J].Structure and Infrastructure Engineering,2022,18(3):395-411. |
8 | Yang Y M, Peng J X, Cai C S,et al.Improved interval evidence theory‑based fuzzy AHP approach for comprehensive condition assessment of long‑span PSC continuous box‑girder bridges[J].Journal of Bridge Engineering,2019,24(12):04019113. |
9 | Andrić J M, Lu D G.Risk assessment of bridges under multiple hazards in operation period[J].Safety Science,2016,83:80-92. |
10 | Moufti S A, Zayed T, Dabous S A.Fuzzy defect based condition assessment of concrete bridges[C]//2013 Joint IFSA World Congress and NAFIPS Annual Meeting.Edmonton,2013:1489-1494. |
11 | Peng G, Han L, Liu Z Y,et al.An application of fuzzy analytic hierarchy process in risk evaluation model[J].Frontiers in Psychology,2021,12:715003. |
12 | Zhu Y X, Tian D Z, Yan F.Effectiveness of entropy weight method in decision‑making[J].Mathematical Problems in Engineering,2020,2020(1):3564835. |
13 | 周勇军,赵洋,赵煜,等.基于动载试验荷载效率的简支梁桥冲击系数研究[J].振动与冲击,2021,40(20):207-216. |
Zhou Yong‑jun, Zhao Yang, Zhao Yu,et al.A study on dynamic load allowance of a simply supported girder bridge based on load efficiency of a dynamic load test[J]Journal of Vibration and Shock,2021,40(20):207-216. | |
14 | 中华人民共和国交通部. 公路桥涵设计通用规范: [S].北京:人民交通出版社,2015. |
Ministry of Transport of the People’s Republic of China. General specifications for design of highway bridges and culverts: [S].Beijing:China Communications Press,2015. | |
15 | 中华人民共和国交通部. 公路桥梁抗风设计规范: [S].北京:人民交通出版社,2018. |
Ministry of Transport of the People’s Republic of China. Wind‑resistent design specification for highway bridges: [S].Beijing:China Communications Press,2018. | |
16 | Liu B, Zhang F L, Wan W Y,et al.Multi‑objective decision‑making for the ecological operation of built reservoirs based on the improved comprehensive fuzzy evaluation method[J].Water Resources Management,2019,33(11):3949-3964. |
17 | Zhang H, He X Q, Mitri H.Fuzzy comprehensive evaluation of virtual reality mine safety training system[J].Safety Science,2019,120:341-351. |
18 | Zhu L Y.Research and application of AHP‑fuzzy comprehensive evaluation model[J].Evolutionary Intelligence,2022,15(4):2403-2409. |
19 | 孙爽.基于智能分析与监测数据融合的桥梁安全评估研究[D].沈阳:东北大学,2019. |
Sun Shuang.Research on bridge safety assessment based on intelligent analysis and monitoring data fusion[D].Shenyang:Northeastern University,2019. | |
20 | Agarwal S, Singh A P.Performance evaluation of textile wastewater treatment techniques using sustainability index:an integrated fuzzy approach of assessment[J].Journal of Cleaner Production,2022,337:130384. |
21 | Liang L, Sun S, Li M,et al.Data fusion technique for bridge safety assessment[J].Journal of Testing and Evaluation,2019,47(3):2080-2100. |
22 | 梁力,孙爽,李明,等.基于变权重和D-S证据理论的桥梁安全评估[J].东北大学学报(自然科学版),2019,40(1):99-103. |
Liang Li, Sun Shuang, Li Ming,et al.Safety assessment of bridges based on variable weight and D-S evidence theory[J]Journal of Northeastern University (Natural Science),2019,40(1):99-103. |
[1] | 朱钊, 李源, 韩逸涛. 车致爆炸作用下装配式桥墩损伤模式及安全防护距离[J]. 东北大学学报(自然科学版), 2023, 44(9): 1337-1348. |
[2] | 刘建坡, 武峰, 王人, 张俊杰. 基于模糊综合评价的深部巷道破坏定量风险评估[J]. 东北大学学报(自然科学版), 2022, 43(5): 733-739. |
[3] | 梁力, 邢观华, 吴凤元. 双基点迭代赋权法在桥梁工程中的应用[J]. 东北大学学报:自然科学版, 2019, 40(5): 740-744. |
[4] | 梁力, 孙爽, 李明, 李鑫. 基于变权重和D-S证据理论的桥梁安全评估[J]. 东北大学学报:自然科学版, 2019, 40(1): 99-103. |
[5] | 朱俊樸, 戴公连, 苏海霆, 梁金宝. 基于高阶矩法的梁-轨系统温度作用代表值[J]. 东北大学学报:自然科学版, 2017, 38(8): 1195-1200. |
[6] | 梁力, 刘奇, 李明. 基于变权综合层次分析法的尾矿库溃坝风险模型[J]. 东北大学学报:自然科学版, 2017, 38(12): 1790-1794. |
[7] | 王连广, 万江. 钢与混凝土组合箱梁剪力滞效应分析[J]. 东北大学学报:自然科学版, 2015, 36(8): 1204-1208. |
[8] | 陈天宇,冯夏庭,梁冰,孙维吉. 煤层气藏地面勘探开发选区灰色模糊评价[J]. 东北大学学报(自然科学版), 2013, 34(3): 429-432. |
[9] | 孙新波,谢远锐,钱雨. 知识联盟中激励协同有效性评价[J]. 东北大学学报(自然科学版), 2013, 34(10): 1508-1511. |
[10] | 宋志华;韩亮亮;李凯;. 财政支农专项资金的绩效模糊综合评价[J]. 东北大学学报(自然科学版), 2011, 32(8): 1202-1205. |
[11] | 陈亚哲;刘桂珍;刘挺;闻邦椿;. 基于熵权的产品广义质量模糊综合评价[J]. 东北大学学报(自然科学版), 2010, 31(2): 241-244. |
[12] | 于兆吉;王文娟;苏长海;. 基层政府公共政策执行综合评价的一种新方法[J]. 东北大学学报(自然科学版), 2010, 31(10): 1508-1511. |
[13] | 石平;王恩德;魏忠义;张丽华;. 抚顺红透山铜矿区土壤质量评价[J]. 东北大学学报(自然科学版), 2009, 30(3): 434-437. |
[14] | 张翠华;周红;赵淼;常广庶;. 供应链协同绩效评价及其应用[J]. 东北大学学报(自然科学版), 2006, 27(6): 706-708. |
[15] | 张震;于天彪;梁宝珠;王宛山;. 基于层次分析法与模糊综合评价的供应商评价研究[J]. 东北大学学报(自然科学版), 2006, 27(10): 1142-1145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||