东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (3): 52-59.DOI: 10.12068/j.issn.1005-3026.2025.20230290
收稿日期:
2023-10-13
出版日期:
2025-03-15
发布日期:
2025-05-29
通讯作者:
徐寒露
作者简介:
徐寒露(1996—),女,辽宁锦州人,东北大学博士研究生基金资助:
Han-lu XU, Hui DONG(), Liang ZHAO, Dao-kuan CHENG
Received:
2023-10-13
Online:
2025-03-15
Published:
2025-05-29
Contact:
Han-lu XU
About author:
DONG Hui E-mail: Helenxululu@outlook.com
摘要:
为了确定水氯镁石热解行为和动力学参数,在不同升温速率下对其进行了热重分析.依据微商热重分析(DTG)和热重分析(TGA)曲线将水氯镁石分解分成第Ⅱ阶段(73.92~278.14 ℃)、第Ⅲ阶段(278.14~540.27 ℃)和第Ⅳ阶段(540.27~849.52 ℃)3个主要的质量损失过程,并利用多阶段反应分离(K-K)法进一步划分DTG曲线重叠部分.通过XRD与傅里叶变换红外(FTIR)光谱分析热解产物,明确了水氯镁石的分解机理:脱水由Mg—O—H键断裂引发,而Mg—O键增强则促使水解反应发生,阻碍脱水.最终,采用Friedman法测定了子反应活化能,结合自定义反应函数与动力学补偿效应,构建了热解动力学模型.
中图分类号:
徐寒露, 董辉, 赵亮, 程道宽. 工业废弃物水氯镁石热分解行为与动力学研究[J]. 东北大学学报(自然科学版), 2025, 46(3): 52-59.
Han-lu XU, Hui DONG, Liang ZHAO, Dao-kuan CHENG. Study on Thermal Decomposition Behavior and Kinetics of Industrial Waste Bischofite[J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 52-59.
Ca2+ | K+ | Na+ | Sr2+ | Si4+ | SO42- |
---|---|---|---|---|---|
0.162 | 0.091 5 | 0.794 | 0.003 55 | 0.003 62 | 0.268 2 |
表1 水氯镁石中主要杂质离子的质量分数 (in bischofite %)
Table 1 Mass fraction of major impurity ions
Ca2+ | K+ | Na+ | Sr2+ | Si4+ | SO42- |
---|---|---|---|---|---|
0.162 | 0.091 5 | 0.794 | 0.003 55 | 0.003 62 | 0.268 2 |
Ⅱ-1 | Ⅲ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | ||
5 | 104.00 | 142.24 | 124.14 | 0.045 | 0.31 | 5 | 357.42 | 488.81 | 404.66 | 0.0041 | 0.65 | ||
10 | 114.09 | 161.81 | 133.46 | 0.069 | 0.31 | 10 | 369.44 | 527.70 | 413.82 | 0.0074 | 0.64 | ||
15 | 121.45 | 173.05 | 145.89 | 0.093 | 0.31 | 15 | 387.04 | 540.27 | 430.56 | 0.0130 | 0.65 | ||
Ⅱ-2 | Ⅳ-1 | ||||||||||||
β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | ||
5 | 142.24 | 174.84 | 156.76 | 0.030 | 0.44 | 5 | 671.27 | 750.14 | 728.86 | 0.016 | 0.91 | ||
10 | 161.81 | 202.33 | 170.66 | 0.053 | 0.43 | 10 | 682.11 | 776.96 | 766.17 | 0.032 | 0.90 | ||
15 | 173.05 | 213.60 | 181.52 | 0.078 | 0.44 | 15 | 684.91 | 803.78 | 782.74 | 0.037 | 0.92 | ||
Ⅱ-3 | Ⅳ-2 | ||||||||||||
β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | ||
5 | 174.84 | 239.45 | 221.40 | 0.020 | 0.59 | 5 | 750.14 | 796.55 | 757.56 | 0.015 | 0.99 | ||
10 | 202.33 | 262.29 | 233.88 | 0.037 | 0.57 | 10 | 776.96 | 823.04 | 778.71 | 0.033 | 0.99 | ||
15 | 216.60 | 278.14 | 243.64 | 0.056 | 0.59 | 15 | 803.78 | 849.52 | 815.77 | 0.036 | 0.99 |
表2 起始温度Ti,结束温度Te,最大分解速率温度Tmax,最大分解速率k,转化率α (maximum decomposition ratek, and conversion rate α)
Table 2 Initial temperature Ti, ending temperature Te, and maximum decomposition rate temperature Tmax,
Ⅱ-1 | Ⅲ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | ||
5 | 104.00 | 142.24 | 124.14 | 0.045 | 0.31 | 5 | 357.42 | 488.81 | 404.66 | 0.0041 | 0.65 | ||
10 | 114.09 | 161.81 | 133.46 | 0.069 | 0.31 | 10 | 369.44 | 527.70 | 413.82 | 0.0074 | 0.64 | ||
15 | 121.45 | 173.05 | 145.89 | 0.093 | 0.31 | 15 | 387.04 | 540.27 | 430.56 | 0.0130 | 0.65 | ||
Ⅱ-2 | Ⅳ-1 | ||||||||||||
β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | ||
5 | 142.24 | 174.84 | 156.76 | 0.030 | 0.44 | 5 | 671.27 | 750.14 | 728.86 | 0.016 | 0.91 | ||
10 | 161.81 | 202.33 | 170.66 | 0.053 | 0.43 | 10 | 682.11 | 776.96 | 766.17 | 0.032 | 0.90 | ||
15 | 173.05 | 213.60 | 181.52 | 0.078 | 0.44 | 15 | 684.91 | 803.78 | 782.74 | 0.037 | 0.92 | ||
Ⅱ-3 | Ⅳ-2 | ||||||||||||
β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | β/ (K·min-1) | ti /℃ | tf /℃ | tmax /℃ | k/(%·min-1) | α | ||
5 | 174.84 | 239.45 | 221.40 | 0.020 | 0.59 | 5 | 750.14 | 796.55 | 757.56 | 0.015 | 0.99 | ||
10 | 202.33 | 262.29 | 233.88 | 0.037 | 0.57 | 10 | 776.96 | 823.04 | 778.71 | 0.033 | 0.99 | ||
15 | 216.60 | 278.14 | 243.64 | 0.056 | 0.59 | 15 | 803.78 | 849.52 | 815.77 | 0.036 | 0.99 |
阶段 | a | b | m | n | q | R2 |
---|---|---|---|---|---|---|
Ⅱ-1 | -4.602 | 0.301 5 | -0.468 2 | 0.318 4 | -19.760 0 | 0.999 2 |
Ⅱ-2 | -0.553 | 0.280 2 | 0.190 6 | 0.269 2 | 0.481 2 | 0.999 0 |
Ⅱ-3 | -2.077 | 0.251 0 | -0.029 6 | 0.581 7 | 0.405 3 | 0.980 1 |
Ⅲ | -4.777 | 0.159 2 | -7.071 0 | 1.957 0 | 0.147 3 | 0.969 8 |
Ⅳ-1 | -5.817 | 0.166 2 | 0.999 8 | 0.176 9 | 0.954 6 | 0.999 1 |
Ⅳ-2 | 1.169 | 0.097 08 | -0.470 1 | 0.921 1 | 3.000 0 | 0.999 0 |
表3 各阶段的拟合结果
Table 3 Fit results for each stage
阶段 | a | b | m | n | q | R2 |
---|---|---|---|---|---|---|
Ⅱ-1 | -4.602 | 0.301 5 | -0.468 2 | 0.318 4 | -19.760 0 | 0.999 2 |
Ⅱ-2 | -0.553 | 0.280 2 | 0.190 6 | 0.269 2 | 0.481 2 | 0.999 0 |
Ⅱ-3 | -2.077 | 0.251 0 | -0.029 6 | 0.581 7 | 0.405 3 | 0.980 1 |
Ⅲ | -4.777 | 0.159 2 | -7.071 0 | 1.957 0 | 0.147 3 | 0.969 8 |
Ⅳ-1 | -5.817 | 0.166 2 | 0.999 8 | 0.176 9 | 0.954 6 | 0.999 1 |
Ⅳ-2 | 1.169 | 0.097 08 | -0.470 1 | 0.921 1 | 3.000 0 | 0.999 0 |
1 | Zhou S Y, Zhou Y, Ling Z Y, et al. Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs[J]. Applied Thermal Engineering, 2018, 133:446-451. |
2 | Guo T J, Geng Y, Song X Q, et al. Tracing magnesium flows in China: a dynamic material flow analysis[J]. Resources Policy, 2023, 83:103627. |
3 | Yang Q Z, Gao X T, Fang L, et al. Controllable crystal growth of Mg(OH)2 hexagonal flakes and their surface modification using graft polymerization[J]. Advanced Powder Technology, 2021, 32(7):2634-2644. |
4 | Wu J, Sun Q, Lu J. Synthesis of magnetic core-shell Fe3O4@SiO2@Mg(OH)2 composite using waste bischofite and its catalytic performance for ozonation of antibiotics[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104318. |
5 | Lin S N, Zhang T A, Fu D X, et al. Utilization of magnesium resources in salt lake brine and catalytic degradation of dye wastewater by doping cobalt and nickel[J]. Separation and Purification Technology, 2021, 270:118808. |
6 | 徐徽, 蔡勇, 石西昌, 等. 水镁石制取高纯氧化镁的研究[J]. 湖南师范大学自然科学学报, 2006, 29(1): 52-55. |
Xu Hui, Cai Yong, Shi Xi-chang, et al. Study on preparation of high-purity magnesia from brucite[J]. Journal of Natural Science of Hunan Normal University, 2006, 29(1):52-55. | |
7 | 刘卫平, 徐徽, 程俊峰, 等. 底液对石灰水法制备氢氧化镁沉降性能的影响[J]. 材料导报, 2012, 26(sup2): 313-316. |
Liu Wei-ping, Xu Hui, Cheng Jun-feng, et al. Effects of base liquid on the settlement property of Mg(OH)2 prepared by lime method[J]. Materials Reports, 2012, 26(sup2):313-316. | |
8 | Liu W P, Xu H, Shi X C, et al. Improved lime method to prepare high-purity magnesium hydroxide and light magnesia from bischofite[J]. JOM, 2019, 71(12):4674-4680. |
9 | Giwa A S, Xu H, Wu J J, et al. Sustainable recycling of residues from the food waste (FW) composting plant via pyrolysis: thermal characterization and kinetic studies[J]. Journal of Cleaner Production, 2018, 180:43-49. |
10 | Siddiqi H, Biswas S, Kumari U, et al. A comprehensive insight into devolatilization thermo-kinetics for an agricultural residue: towards a cleaner and sustainable energy[J]. Journal of Cleaner Production, 2021, 310:127365. |
11 | Zhang H B, Cao T F, Cheng Y. Synthesis of nanostructured MgO powders with photo luminescence by plasma-intensified pyrohydrolysis process of bischofite from brine[J]. Green Processing and Synthesis, 2014, 3(3):215-222. |
12 | Nasrullah A, Khan A S, Khan S Z, et al. Kinetics and thermodynamic study of calligonum polygonoides pyrolysis using model-free methods[J]. Process Safety and Environmental Protection, 2022, 160:130-138. |
13 | Liu H D, Xu G R, Li G B. Pyrolysis characteristic and kinetic analysis of sewage sludge using model-free and master plots methods[J]. Process Safety and Environmental Protection, 2021, 149:48-55. |
14 | Li P, Liu B X, Lai X, et al. Thermal decomposition mechanism and pyrolysis products of waste bischofite calcined at high temperature[J]. Thermochimica Acta, 2022, 710:179164. |
15 | Zhang Z M, Lu X C, Yan Y, et al. The dehydration of MgCl2·6H2O by inhibition of hydrolysis and conversion of hydrolysate[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138:114-119. |
16 | Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1):159-164. |
17 | Opfermann J R, Kaisersberger E, Flammersheim H J. Model-free analysis of thermoanalytical data-advantages and limitations[J]. Thermochimica Acta, 2002, 391(1-2):119-127. |
18 | Da Silva J C G, Alves J L F, de Araujo Galdino W V A, et al. Pyrolysis kinetic evaluation by single-step for waste wood from reforestation[J]. Waste Management, 2018, 72:265-273. |
19 | Raheem A, He Q, Ding L, et al. Evaluating performance of pyrolysis and gasification processes of agriculture residues-derived hydrochar: effect of hydrothermal carbonization[J]. Journal of Cleaner Production, 2022, 338:130578. |
20 | Alvarenga L M, Xavier T P, Barrozo M A S, et al. Determination of activation energy of pyrolysis of carton packaging wastes and its pure components using thermogravimetry[J]. Waste Management, 2016, 53:68-75. |
21 | Cheng X X, Zhang M, Wang Z Q, et al. IR and kinetic study of sewage sludge combustion at different oxygen concentrations[J]. Waste Management, 2018, 74:279-287. |
22 | Liu H, Hong R, Xiang C L, et al. Thermal decomposition kinetics analysis of the oil sludge using model-based method and model-free method[J]. Process Safety and Environmental Protection, 2020, 141:167-177. |
23 | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta,2011, 520(1/2):1-19. |
24 | Sun H M, Guo S, Chen S N, et al. Thermal behavior and decomposition mechanism of azobenzene by using kinetic calculation method and molecular dynamics simulation method[J]. Process Safety and Environmental Protection, 2022, 161: 447-453. |
25 | Cai J M, Liu R H. Kinetic analysis of solid-state reactions: a general empirical kinetic model[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 3249-3253. |
26 | Liu L Y, Pang Y H, Lyu D, et al. Thermal and kinetic analyzing of pyrolysis and combustion of self-heating biomass particles[J]. Process Safety and Environmental Protection, 2021, 151:39-50. |
27 | Chen R Y, Xu M J. Kinetic and volatile products study of micron-sized PMMA waste pyrolysis using thermo-gravimetry and Fourier transform infrared analysis[J]. Waste Management, 2020, 113:51-61. |
28 | Song X F, Wang J, Wang X T, et al. Preparation of anhydrous magnesium chloride from MgCl2⋅6H2O II thermal decomposition mechanism of the intermediate product[J] Materials Science Forum,2005,488/489:61-64. |
29 | Pathak A D, Nedea S, van Duin A C T, et al. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage[J]. Physical Chemistry Chemical Physics, 2016, 18(23):15838-15847. |
30 | Xu J X, Li T X, Yan T S, et al. Dehydration kinetics and thermodynamics of magnesium chloride hexahydrate for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021,219:110819. |
31 | Jin M M, Sun Y Z, Li P, et al. The thermal decomposition study of MgCl2·6H2O·1,4-C4H8O2 [J].Chemical Engineer-ing Research and Design, 2015, 104:256-263. |
32 | Smeets B, Iype E, Nedea S V, et al. A DFT based equilibrium study on the hydrolysis and the dehydration reactions of MgCl2 hydrates[J]. The Journal of Chemical Physics, 2013, 139(12):124312. |
33 | Luo L P, Zhang Z Y, Li C, et al. Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis[J]. Energy, 2021, 233:121194. |
[1] | 许加玲, 许开立, 刘博. 碳酸氢盐抑制豆粕粉尘爆炸特性实验研究[J]. 东北大学学报(自然科学版), 2024, 45(12): 1798-1804. |
[2] | 张艺腾, 程星星, 王学涛, 王志强. 等温热解废弃蔬菜叶的生物炭性质[J]. 东北大学学报(自然科学版), 2023, 44(3): 424-431. |
[3] | 程春龙, 乐启炽. Al含量对AZ系镁合金燃点的影响[J]. 东北大学学报:自然科学版, 2019, 40(9): 1263-1267. |
[4] | 刘燕, 李小龙, 张宸, 张子木. 稀土氯化物喷雾热解装置雾化效果的物理模拟[J]. 东北大学学报:自然科学版, 2019, 40(2): 218-223. |
[5] | 吕超, 牛丽萍, 赵秋月, 王文博. 热解产物MgO颗粒形貌对收率的影响[J]. 东北大学学报:自然科学版, 2019, 40(11): 1579-1583. |
[6] | 白丽梅, 邓玉芬, 韩跃新, 赵文青. 微细菱镁矿热分解过程及动力学[J]. 东北大学学报:自然科学版, 2018, 39(3): 398-403. |
[7] | 薛首峰, 吴文远, 边雪. 氯化铽气溶胶的高温热解机理[J]. 东北大学学报:自然科学版, 2018, 39(10): 1423-1427. |
[8] | 姚锡文, 许开立, 贾彦强, 张秀敏. 稻壳和稻草的热重-质谱分析及其反应动力学[J]. 东北大学学报:自然科学版, 2016, 37(3): 426-430. |
[9] | 姚锡文, 许开立, 闫放, 何钟琦. 不同农业生物质废弃物的热解特性及动力学对比[J]. 东北大学学报:自然科学版, 2016, 37(11): 1593-1597. |
[10] | 姚锡文, 许开立, 王文菁, 张秀敏. 玉米芯生物质灰的物理化学特性[J]. 东北大学学报:自然科学版, 2016, 37(1): 100-104. |
[11] | 骆俊晖, 缪林昌, 石文博. 软土初始动剪切模量及函数计算分析[J]. 东北大学学报:自然科学版, 2015, 36(8): 1193-1198. |
[12] | 吴文远, 薛首峰, 边雪, 王振峰. 超细氧化铈制备工艺研究[J]. 东北大学学报:自然科学版, 2015, 36(6): 800-804. |
[13] | 姚锡文, 许开立, 闫放, 王贝贝. 花生壳的热重-质谱分析及其反应动力学[J]. 东北大学学报:自然科学版, 2015, 36(12): 1761-1765. |
[14] | 王余莲,印万忠,姚金,侯英. 菱镁矿法合成微纳米三水碳酸镁晶须的研究[J]. 东北大学学报:自然科学版, 2014, 35(9): 1335-1339. |
[15] | 赵爱春,张廷安,吕国志,刘燕. 结晶氯化铝的热解性能[J]. 东北大学学报:自然科学版, 2014, 35(1): 75-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||