东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (1): 18-25.DOI: 10.12068/j.issn.1005-3026.2025.20239037

• 信息与控制 • 上一篇    下一篇

基于改进背压算法的车辆路线动态规划方法

王硕1,2, 吴维敏1,2, 张涛1,2   

  1. 1.浙江大学 工业控制技术国家重点实验室,浙江 杭州 310027
    2.浙江大学 控制科学与工程学院,浙江 杭州 310027
  • 收稿日期:2023-07-17 出版日期:2025-01-15 发布日期:2025-03-25
  • 作者简介:王 硕(1993—),男,山东菏泽人,浙江大学博士研究生
    吴维敏(1970—), 男,浙江仙居人,浙江大学教授.
  • 基金资助:
    浙江省尖兵领雁研发攻关计划项目(2023C01174)

Dynamic Vehicle Routing Method Based on Improved Back-Pressure Algorithm

Shuo WANG1,2, Wei-min WU1,2, Tao ZHANG1,2   

  1. 1.State Key Laboratory of Industrial Control Technology,Zhejiang University,Hangzhou 310027,China
    2.College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China. Corresponding author: WU Wei-min,E-mail: wmwu@iipe. zju. edu. cn
  • Received:2023-07-17 Online:2025-01-15 Published:2025-03-25

摘要:

为了缓解交通网络中的拥堵,提出了一种基于网联车密度和速度背压的车辆调度方法.考虑道路上车辆的复杂性和异质性,通过计算上、下游道路的车辆密度来确定背压值,并使用道路的最大通行速度作为权重.根据背压的比率调整上游车队分配至下游道路的车辆数量,从而实现车流的均衡分布.此外,以最小化车队行驶距离为优化目标确定单个车辆路线计划,以减少车辆的平均行驶距离.仿真结果表明,该方法比其他基于背压算法的路线动态规划方法,能有效减少交通网络中排队车辆的数量,从而降低交通拥堵,同时也缩短了车辆的平均行驶距离和时间.

关键词: 网联车, 车辆调度, 背压算法, 车辆路线动态规划, 交通拥堵

Abstract:

A vehicle scheduling method based on vehicle density and speed back‑pressure (BP) is proposed to alleviate traffic congestion in traffic network. Addressing the complexity and heterogeneity of vehicles, the calculation of the BP value is based on vehicle density on upstream and downstream roads, with maximum allowable speeds serving as weights. Then, the BP ratio is used to govern the number of vehicles allocated from the upstream fleet to the downstream road to balance the traffic flow. In addition, the shortest driving distance for the fleet is used as the optimization goal for individual vehicle routing to reduce the average travel distance. Simulation results show that the proposed method is more effective than other BP algorithm‑based dynamic vehicle routing methods in reducing queuing length and alleviating congestion, while decreasing the average travel distance and time for vehicles significantly.

Key words: connected vehicle, vehicle scheduling, back?pressure(BP) algorithm, dynamic vehicle routing, traffic congestion

中图分类号: