东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (9): 34-40.DOI: 10.12068/j.issn.1005-3026.2025.20240030

• 信息与控制 • 上一篇    下一篇

基于线性变换余弦球面分布的光照估计方法

于连江, 刘洪娟()   

  1. 东北大学 软件学院,辽宁 沈阳 110819
  • 收稿日期:2024-02-02 出版日期:2025-09-15 发布日期:2025-12-03
  • 通讯作者: 刘洪娟
  • 作者简介:于连江(1998—),男,辽宁大连人,东北大学硕士研究生
    刘洪娟(1980—),女,山东青岛人,东北大学副教授,硕士生导师.
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(N2317003)

Illumination Estimation Method Based on Linear Transformation of Cosine Spherical Distribution

Lian-jiang YU, Hong-juan LIU()   

  1. Software College,Northeastern University,Shenyang 110819,China. Corresponding author: LIU Hong-juan,E-mail: liuhj@swc. neu. edu. cn
  • Received:2024-02-02 Online:2025-09-15 Published:2025-12-03
  • Contact: Hong-juan LIU

摘要:

为了精确描述和参数化场景光源,实现高精度的单一图像光照估计,提出了一种基于线性变换余弦球面分布的光照表示方法,构建了回归神经网络,用于从单一图像中推断光源的参数化分布和强度.创新性地引入基于奇异值分解的损失函数,该函数可以精确简洁地衡量两个参数化光源的距离,能够显著提升回归网络的精度.实验结果表明,与现有方法相比,该方法在复杂光照条件下表现优异,尤其在捕捉光照各向异性信息方面有明显改进.

关键词: 光照估计, 线性变换, 余弦球面分布, 回归网络, 奇异值分解

Abstract:

To accurately describe and parameterize scene light sources and achieve high-precision single-image illumination estimation, an illumination representation method based on linear transformation of cosine spherical distribution was proposed. A regression neural network was designed to infer the parametric distribution and intensity of light sources from a single image. A loss function based on singular value decomposition was innovatively introduced. This function could precisely and succinctly measure the distance between two parameterized light sources, significantly enhancing the accuracy of the regression network. Experimental results demonstrate that,compared with existing methods, this method performs exceptionally well under complex illumination conditions, particularly showing a notable improvement in capturing anisotropic illumination information.

Key words: illumination estimation, linear transformation, cosine spherical distribution, regression network, singular value decomposition

中图分类号: