东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (10): 10-17.DOI: 10.12068/j.issn.1005-3026.2025.20240057

• 信息与控制 • 上一篇    

基于多种特征综合识别时序网络中的影响力传播者

赵海, 杨树坤, 缪九男, 尉雪龙   

  1. 东北大学 计算机科学与工程学院,辽宁 沈阳 110169
  • 收稿日期:2024-03-11 出版日期:2025-10-15 发布日期:2026-01-13
  • 作者简介:赵 海(1959—),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2020GFZD014)

Comprehensive Identification of Influential Spreaders in Temporal Networks Considering Multiple Features

Hai ZHAO, Shu-kun YANG, Jiu-nan MIAO, Xue-long YU   

  1. School of Computer Science & Engineering,Northeastern University,Shenyang 110169,China. Corresponding author: YU Xue-long,E-mail: primelongyu@gmail. com
  • Received:2024-03-11 Online:2025-10-15 Published:2026-01-13

摘要:

在时序网络中精准识别有影响力的传播者对产品推广、谣言抑制等领域至关重要.针对现有方法多依赖单一特征(邻居数量、节点位置或传播能力)而忽略特征间相互作用导致准确率低的问题,提出基于时序引力(TG)模型和信息熵的识别方法(TGBISR),旨在从多特征融合角度提升识别准确性.该方法首先利用TG模型分析用户的度中心性、紧密中心性和介数中心性,分别刻画其局部、位置和全局特征;进而通过信息熵衡量各特征的信息含量并赋予不同权重,加权综合计算用户影响力.为评估效果,在4个真实数据集上使用易感-感染-恢复(SIR)模型模拟信息传播以获取用户真实影响力,并通过肯德尔相关系数和回归分析比较TGBISR计算结果与真实值的相关性.实验结果表明,TGBISR方法在识别有影响力传播者方面,其计算结果与SIR模型真实影响力展现出更高的统计相关性,准确性显著且稳定地优于其他5种基准算法.

关键词: 时序网络, 影响力传播者, 时序引力模型, 信息熵

Abstract:

Accurately identifying influential spreaders in temporal networks is crucial for product promotion, rumor suppression, and other aspects. Existing methods mostly rely on a single feature (the number of neighbors, node location, or propagation ability) and ignore interactions between features, resulting in low accuracy. Therefore, a temporal gravity(TG)model and an information entropy-based identification method(TGBISR)were proposed to improve identification accuracy by fusing multiple features. First, the TG model was used to analyze the degree centrality, closeness centrality, and betweenness centrality of the user, portraying their local, positional, and global features, respectively. Then, the information content of each feature was measured through information entropy, and different weights were assigned to them to comprehensively compute the user’s influence. To verify the result, the susceptible-infected-recovered (SIR) model was used to simulate information dissemination on four real datasets to obtain the real influence of users. The correlation between the TGBISR calculation results and the real values was then compared using Kendall’s correlation coefficient and regression analysis. The experimental results show that the TGBISR method’s calculated results exhibit a higher statistical correlation with the true influence of the SIR model when identifying influential spreaders, and its accuracy significantly and consistently outperforms that of the other five benchmark algorithms.

Key words: temporal network, influential spreader, temporal gravity model, information entropy

中图分类号: