[1] |
杨天鸿,王赫,董鑫,等.露天矿边坡稳定性智能评价研究现状、存在问题及对策[J].煤炭学报,2020,45(6):2277-2295.
|
|
Yang Tian-hong, Wang He, Dong Xin, et al. Current situation,problems and countermeasures of intelligent evaluation of slope stability in open pit[J]. Journal of China Coal Society, 2020,45(6):2277-2295.
|
[2] |
李荟,韩晓飞,朱万成,等.基于多源信息融合的矿山边坡滑坡灾害研究现状与展望[J].工矿自动化,2024,50(6):6-15.
|
|
Li Hui, Han Xiao-fei, Zhu Wan-cheng, et al. Current status and prospects of research on landslide disasters in mine slopes based on multi-source information fusion[J]. Journal of Mine Automation, 2024,50(6):6-15.
|
[3] |
Liu K M, Li H, Pang S H, et al. Numerical simulation analysis of slope instability and failure of limestone mine in Weibei[J]. Advances in Civil Engineering, 2021, 2021(1): 5991348.
|
[4] |
Azarfar B, Ahmadvand S, Sattarvand J, et al. Stability analysis of rock structure in large slopes and open-pit mine: numerical and experimental fault modeling[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 4889-4905.
|
[5] |
Zhang K, Cao P, Meng J J, et al. Modeling the progressive failure of jointed rock slope using fracture mechanics and the strength reduction method[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 771-785.
|
[6] |
Jiang S, Liu H S, Lian M J, et al. Rock slope displacement prediction based on multi-source information fusion and SSA-DELM model[J]. Frontiers in Environmental Science, 2022, 10: 982069.
|
[7] |
Dai F, Zhu W C, Ren M, et al. Landslide displacement prediction based on spatio-temporal association rule mining between target case and similar cases[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37(11): 4229-4247.
|
[8] |
Hao Y K, Huang B B, Sulowicz M. A practical prediction model for surface deformation of open-pit mine slopes based on artificial intelligence[J]. Elektronika Ir Elektrotechnika, 2024, 30(3): 46-53.
|
[9] |
Niu H L, Xu K L, Liu C. A decomposition-ensemble model with regrouping method and attention-based gated recurrent unit network for energy price prediction[J]. Energy, 2021, 231: 120941.
|
[10] |
Yang B B, Yin K L, Lacasse S, et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16(4): 677-694.
|
[11] |
Lin Z A, Sun X Y, Ji Y F. Landslide displacement prediction model using time series analysis method and modified LSTM model[J]. Electronics, 2022, 11(10): 1519.
|
[12] |
Liu Z Q, Guo D, Lacasse S, et al. Algorithms for intelligent prediction of landslide displacements[J]. Journal of Zhejiang University: Science A, 2020, 21(6): 412-429.
|
[13] |
Yang J F, Ren Y Q, Chai J, et al. Adit deformation prediction based on ICEEMDAN dispersion entropy and LSTM-BP[J]. Optical Fiber Technology, 2023, 79: 103364.
|
[14] |
赵二峰,李章寅,袁冬阳.基于双阶段注意力机制的大坝变形深度学习预测模型[J].河海大学学报(自然科学版),2023,51(6):44-52.
|
|
Zhao Er-feng, Li Zhang-yin, Yuan Dong-yang. Deep learning model for deformation prediction of dam based on dual-stage attention mechanism [J]. Journal of Hohai University(Natural Sciences), 2023,51(6):44-52.
|
[15] |
张振坤, 张冬梅, 李江, 等. 基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究[J]. 岩土力学, 2022,43(sup2): 477-486, 507.
|
|
Zhang Zhen-kun, Zhang Dong-mei, Li Jiang, et al. Study on LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism[J]. Rock and Soil Mechanics, 2022, 43(sup2): 477-486, 507.
|
[16] |
唐宇峰, 陈星红, 蔡宇, 等. 基于时序分解和SSA-LSTM-Attention模型的尾矿坝位移预测[J]. 科学技术与工程, 2023,23(29): 12753-12759.
|
|
Tang Yu-feng, Chen Xing-hong, Cai Yu, et al. Tailings dam displacement prediction based on time-series decomposition and SSA-LSTM-Attention model[J]. Science Technology and Engineering, 2023,23(29): 12753-12759.
|
[17] |
曹鑫宇,朱琳,宫辉力,等.AM-LSTM网络的北京平原东部地面沉降模拟[J].遥感学报,2022,26(7):1302-1314.
|
|
Cao Xin-yu, Zhu Lin, Gong Hui-li, et al. Land subsidence simulation in the east of Beijing plain based on the AM-LSTM Network[J]. National Remote Sensing Bulletin, 2022,26(7):1302-1314.
|
[18] |
Li L M, Wang C Y, Wen Z Z, et al. Landslide displacement prediction based on the ICEEMDAN, ApEn and the CNN-LSTM models[J]. Journal of Mountain Science, 2023, 20(5): 1220-1231.
|
[19] |
Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.
|
[20] |
刘建伟,刘俊文,罗雄麟.深度学习中注意力机制研究进展[J].工程科学学报,2021,43(11):1499-1511.
|
|
Liu Jian-wei, Liu Jun-wen, Luo Xiong-lin. Research progress in attention mechanism in deep learning[J]. Chinese Journal of Engineering, 2021,43(11):1499-1511.
|
[21] |
Brauwers G, Frasincar F. A general survey on attention mechanisms in deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3279-3298.
|
[22] |
Fu X G, Wei Y H, Su Y, et al. Shear wave velocity prediction based on the long short-term memory network with attention mechanism[J]. Applied Sciences, 2024, 14(6): 2489.
|
[23] |
杨背背,殷坤龙,杜娟.基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J].岩石力学与工程学报,2018,37(10):2334-2343.
|
|
Yang Bei-bei, Yin Kun-long, Du Juan. A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(10):2334-2343.
|