东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (7): 49-58.DOI: 10.12068/j.issn.1005-3026.2025.20240212

• 工业智能理论与方法 • 上一篇    下一篇

电缆隧道环境下工业智能巡检机器人定位研究

王玉涛1,2(), 安俊炜1, 秦长生1, 郭伟帆1   

  1. 1.东北大学 信息科学与工程学院,辽宁 沈阳 110819
    2.东北大学 流程工业数字化仪表教育部工程研究中心,辽宁 沈阳 110819
  • 收稿日期:2024-11-10 出版日期:2025-07-15 发布日期:2025-09-24
  • 通讯作者: 王玉涛
  • 基金资助:
    国家自然科学基金资助项目(62473092);国家自然科学基金资助项目(62303097);辽宁省自然科学基金资助项目(2023JH2/101700356)

Research on Localization of Industrial Intelligent Inspection Robots in Cable Tunnel Environment

Yu-tao WANG1,2(), Jun-wei AN1, Chang-sheng QIN1, Wei-fan GUO1   

  1. 1.School of Information Science & Engineering,Northeastern University,Shenyang 110819,China
    2.Engineering Research Center of Digital Instrument for Process Industries,Ministry of Education,Northeastern University,Shenyang 110819,China.
  • Received:2024-11-10 Online:2025-07-15 Published:2025-09-24
  • Contact: Yu-tao WANG

摘要:

电缆隧道封闭狭长,存在重复布设的电缆架和相似的场景纹理,属于退化场景.针对该场景,提出了1种基于点线特征融合的视觉惯导SLAM(simultaneous localization and mapping)算法.该算法通过长度抑制和短线拟合来改进高维线特征,使其能够更有效地描述结构化显著的隧道场景.此外,针对电缆隧道中特征相似导致的回环检测失败问题,引入具有高效识别和精确位姿估计的ArUco标记,限定回环发生区域,并利用最小化位姿变换筛选最佳回环帧,从而提升回环检测的准确度和定位精度.最后,在电缆隧道内采集数据集并进行实验验证.结果表明,相对于VINS–Mono(visual inertial system–Mono),所提算法的绝对轨迹精度平均提升了69.73%,满足了电缆隧道巡检的应用需求.

关键词: 同步定位与地图构建, 点线特征融合, 回环检测, 工业机器人, 电缆隧道

Abstract:

The cable tunnel is closed and narrow, with repetitively laid cable racks and similar scene textures, which is a degraded scenario. To address this environment, a visual-inertial SLAM (simultaneous localization and mapping) algorithm based on point-line feature fusion is proposed. The algorithm improves the high-dimensional line features through length suppression and short line fitting to make it more effective in describing the structural features of tunnel scene. In addition, for the problem of loop closure detection failure due to feature similarity in cable tunnels, ArUco markers with efficient recognition and accurate pose estimation are introduced to limit the loop closure area, and the optimal loop closure frames are selected using the minimized pose transformation to improve detection accuracy and localization precision. Finally, dataset collection and experimental validation were conducted in actual cable tunnels. The results show that the absolute trajectory accuracy of the algorithm is improved by 69.73% on average relative to VINSMono(visual intertial system-Mono), which meets the application requirements of cable tunnel inspection.

Key words: simultaneous localization and mapping, point-line feature fusion, loop closure detection, industrial robot, cable tunnel

中图分类号: