东北大学学报(自然科学版) ›› 2008, Vol. 29 ›› Issue (11): 1528-1531.DOI: -

• 论著 • 上一篇    下一篇

基于混合分类的肺结节检测算法

郭薇;魏颖;周翰逊;薛定宇;   

  1. 东北大学信息科学与工程学院;
  • 收稿日期:2013-06-22 修回日期:2013-06-22 出版日期:2008-11-15 发布日期:2013-06-22
  • 通讯作者: Guo, W.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(60671050);;

Detection algorithm based on hybrid classification for pulmonary nodules

Guo, Wei (1); Wei, Ying (1); Zhou, Han-Xun (1); Xue, Ding-Yu (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
  • Received:2013-06-22 Revised:2013-06-22 Online:2008-11-15 Published:2013-06-22
  • Contact: Guo, W.
  • About author:-
  • Supported by:
    -

摘要: 使用最优阈值的分割方法获得肺实质,并使用C均值聚类的方法获得感兴趣区域(ROI),通过混合分类方法对ROI进行分类.在分类过程中,首先定义肺结节的两个三维特征以及相应的两条规则,进行基于规则的初始分类,再构造基于改进Mahalanobis距离的非线性分类器进行再次分类,从而进一步降低假阳性.经过混合分类处理,肺结节与血管等干扰信息得到有效的区分.实验结果表明,该算法检测肺结节具有较高的敏感性.

关键词: 肺实质分割, ROI提取, 决策规则, Mahalanobis距离矢量, 混合分类

Abstract: The approach to weight segmentation with optimum threshold values was used to get the pulmonary parenchyma, and the regions of interests (ROI) were obtained by C-means clustering algorithm and classified by hybrid method, during which two three-dimensional characteristics of pulmonary nodules and two corresponding rules were defined for regular initial classification. Then, a nonlinear classifier was constructed by improving the Mahalanobis distance vector to classify ROI again, so as to lower the false positive. After the hybrid classification, the pulmonary nodules were differentiated efficiently from such interfering information as bloods. Experiment results indicated that the algorithm is highly sensitive to detecting pulmonary nodules.

中图分类号: