东北大学学报:自然科学版 ›› 2014, Vol. 35 ›› Issue (11): 1530-1533.DOI: 10.12068/j.issn.1005-3026.2014.11.003

• 信息与控制 • 上一篇    下一篇

基于互信息和文化基因算法的网络流量特征选择

苗长胜1,原常青1,王兴伟1,常桂然2   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 东北大学 计算中心, 辽宁 沈阳110819)
  • 收稿日期:2013-09-13 修回日期:2013-09-13 出版日期:2014-11-15 发布日期:2014-07-03
  • 通讯作者: 苗长胜
  • 作者简介:苗长胜(1981-),男,山东烟台人,东北大学博士研究生;王兴伟(1968-),男,辽宁盖州人,东北大学教授,博士生导师;常桂然(1946-),男,河北曲周人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(71071028,70931001);教育部高等学校博士学科点专项科研基金资助项目(20120042130003);中央高校基本科研业务费专项资金资助项目(N120104001).

A Hybrid Feature Selection Algorithm Based on Mutual Information and Memetic Framework to Optimize Traffic Classification

MIAO Changsheng1, YUAN Changqing1, WANG Xingwei1, CHANG Guiran2   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. Computing Center, Northeastern University, Shenyang 110819, China.
  • Received:2013-09-13 Revised:2013-09-13 Online:2014-11-15 Published:2014-07-03
  • Contact: MIAO Changsheng
  • About author:-
  • Supported by:
    -

摘要: 利用文化基因框架的引导,提出一种结合了封装和过滤的混合型特征选择算法.该算法在传统的遗传算法中采用了基于互信息的局部搜索算法,全局搜索以分类器精度为适应度函数,保证得到全局最优解;局部搜索以联合互信息为评价指标,加快了寻找最优特征子集的收敛速度.实验表明,与现有算法相比,该算法在特征数量和计算复杂度上有显著改进,采用该算法的网络流量识别方法能以更少的特征获得更高的分类精度.

关键词: 互信息, 文化基因算法, 特征选择, 流量识别

Abstract: Under the memetic framework, a new feature selection method combining filter and wrapper models was proposed. In the hybrid algorithm, classifier accruracy was used as fitness function to ensure global optimization, while joint mutual information was used as evaluation indicator to accelerate the process. The experimental results indicated that the proposed method outperformed the existing methods in computational efficeicecy and number of selected features. Applying this algorithm to traffic classification resulted in the improved accuracy with fewer features.

Key words: mutual information, memetic framework algorithm, feature selection, traffic classification

中图分类号: