东北大学学报:自然科学版 ›› 2014, Vol. 35 ›› Issue (3): 419-423.DOI: 10.12068/j.issn.1005-3026.2014.03.026

• 机械工程 • 上一篇    下一篇

基于约束独立分量分析的脑电特征提取

黄璐1,王宏2   

  1. (1. 东北大学 中荷生物医学与信息工程学院, 辽宁 沈阳110819; 2. 东北大学 机械工程与自动化学院, 辽宁 沈阳110819)
  • 收稿日期:2013-04-18 修回日期:2013-04-18 出版日期:2014-03-15 发布日期:2013-11-22
  • 通讯作者: 黄璐
  • 作者简介:黄璐(1979-),女,辽宁开原人,东北大学博士研究生,大连海洋大学讲师;王宏(1960-),女,辽宁沈阳人,东北大学教授,博士生导师
  • 基金资助:
    国家自然科学基金资助项目(61071057)

EEG Feature Extraction Based on Constrained ICA

HUANG Lu1, WANG Hong2   

  1. 1. School of SinoDutch Biomedical & Information Engineering, Northeastern University, Shenyang 110819, China; 2. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.
  • Received:2013-04-18 Revised:2013-04-18 Online:2014-03-15 Published:2013-11-22
  • Contact: WANG Hong
  • About author:-
  • Supported by:
    -

摘要: 针对脑机接口(braincomputerinterface,BCI)系统特征提取较慢的现状,提出基于约束独立分量分析(constrainedindependentcomponentanalysis,cICA)的P300特征提取方法.首先,针对各位P300实验被试,通过EEG图像研究其特有P300时域特性;然后,根据P300特性构建参考信号,并将参考信号与独立分量分析(independentcomponentanalysis,ICA)方法结合,基于64导联EEG,提取出与P300相关度最大的独立分量;最后,依据提取出的独立分量构造3维特征向量进行分类.实验采用线性分类器,针对BCICompetitionIIdatasetIIb和BCICompetitionIIIdatasetII两组公共数据集进行了验证.结果表明,提出方法在3次叠加平均下识别正确率达671%,15次达952%,在相同实验条件下,分类时间也较其他方法缩短.

关键词: 脑机接口, 脑电, 特征提取, 约束独立分量分析, 识别正确率

Abstract: Considering the current timeconsuming feature extraction of the braincomputer interface, a feature extraction method based on constrained ICA was proposed for P300BCI. The temporal P300 character of every subject was studied using the EEG image, and then, reference signals were built according to the temporal P300 character. Using the reference signals combined with ICA, the most correlative independent components were extracted based on 64channel EEG. According to the extracted independent components, 3dimensional feature vectors were built and put into the linear classifier at last. Two public datasets of BCI Competition II and III were used to verify the method. The results show that the recognition accuracy can be improved to 671% only with three times average, and to 952% with fifteen times average. The computation time is also shorter than other methods in the same experimental conditions.

Key words: braincomputer interface, electroencephalogram(EEG), feature extraction, constrained ICA, recognition accuracy

中图分类号: