东北大学学报:自然科学版 ›› 2016, Vol. 37 ›› Issue (7): 979-983.DOI: 10.12068/j.issn.1005-3026.2016.07.015

• 机械工程 • 上一篇    下一篇

慢走丝电火花线切割TC4试验研究和参数优化

孙瑶, 巩亚东, 刘寅   

  1. (东北大学 机械工程与自动化学院, 辽宁 沈阳110819)
  • 收稿日期:2015-06-23 修回日期:2015-06-23 出版日期:2016-07-15 发布日期:2016-07-13
  • 通讯作者: 孙瑶
  • 作者简介:孙瑶 (1990-),女,辽宁锦州人,东北大学博士研究生; 巩亚东(1958-),男,辽宁本溪人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目( 51375082) ; 国家自然科学基金青年基金资助项目( 51205053).

Experimental Research and Parameter Optimization for Low Speed Wire Electrical Discharge Machining TC4

SUN Yao, GONG Ya-dong, LIU Yin   

  1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.
  • Received:2015-06-23 Revised:2015-06-23 Online:2016-07-15 Published:2016-07-13
  • Contact: SUN Yao
  • About author:-
  • Supported by:
    -

摘要: 以慢走丝电火花线切割加工钛合金TC4为试验对象,在正交试验的基础上,通过信噪比(signal to noise ratio, SNR)方法研究峰值电流、开路电压、脉冲宽度、走丝速度和丝张力对加工时间、切缝宽度和表面粗糙度的影响规律.采用灰色关联度分析方法将多目标参数优化转化为单目标灰关联度的优化,得到慢走丝电火花线切割TC4在多项工艺指标要求下的最优参数组合.多目标优化结果表明:在峰值电流为30A,开路电压为100V,脉冲宽度为20μs,走丝速度为105mm/s,丝张力为12N时,表面粗糙度减小了8.35%,切缝宽度减少了2.59%,加工时间减小了26.06%.

关键词: 慢走丝电火花线切割, TC4, 信噪比, 灰色关联分析, 参数优化

Abstract: LS-WEDM (low speed wire electrical discharge machining) TC4 was regarded as the research object, the influence of peak current, open circuit voltage, pulse width, wire speed and wire tension’s effects on process time, kerf width and surface roughness was studied by SNR (signal to noise ratio) method. The gray correlation analysis was applied to realize the transformation from multi-objective parameter optimization to signal objective optimization of grey correlation degree and the optimum machining parameter combination of LS-WEDM were obtained under the multiple technical index requirements. Multi-objective parameter optimization results show that when the peak current is 30A, the open circuit voltage is 100V, the pulse width is 20μs, the wire speed is 105mm/s and wire tension is 12N, the surface roughness, kerf width and process time were reduced by 8.35%, 2.59% and 26.06%, respectively.

Key words: LS-WEDM, TC4, SNR, gray correlation analysis, parameter optimization

中图分类号: