东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (10): 1386-1391.DOI: 10.12068/j.issn.1005-3026.2019.10.004

• 信息与控制 • 上一篇    下一篇

基于脑电的立体视频加速度的特征识别

沈丽丽1, 耿小荃1, 徐礼胜2   

  1. (1. 天津大学 电气自动化与信息工程学院, 天津300072; 2. 东北大学 医学与生物信息工程学院, 辽宁 沈阳110169)
  • 收稿日期:2018-12-27 修回日期:2018-12-27 出版日期:2019-10-15 发布日期:2019-10-10
  • 通讯作者: 沈丽丽
  • 作者简介:沈丽丽(1978-),女,天津人,天津大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(61520106002,61471262,61773110).

EEG-Based Feature Recognition of Stereoscopic Video Acceleration

SHEN Li-li1, GENG Xiao-quan1, XU Li-sheng2   

  1. 1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072,China; 2. School of Medicine & Biological Information Engineering, Northeastern University, Shenyang 110169, China.
  • Received:2018-12-27 Revised:2018-12-27 Online:2019-10-15 Published:2019-10-10
  • Contact: SHEN Li-li
  • About author:-
  • Supported by:
    -

摘要: 构建一种能够自适应提取脑电特征的PMEMD-2JSD-CSP模型,明确了立体视频的两类匀加速深度运动的可分性.利用部分噪声辅助多变量经验模态分解(PNA-MEMD)对脑电(EEG)信号进行分解得到本征模态函数(IMF),应用基于詹森-香农散度(JSD)的有效因子对IMF进行两次不同范围的自适应筛选,筛选结果按照权重叠加构成重构信号.利用共空间模式(CSP)对重构信号进行空域特征提取,支持向量机(SVM)对特征进行分类,分类正确率最高为73.16%,证明了该模型对两类EEG信号特征提取的有效性.

关键词: 脑电, 立体深度匀加速运动, 视觉不舒适, 多变量经验模态分解, 共空间模式

Abstract: A PMEMD-2JSD-CSP model capable of adaptively extracting EEG features was established to clarify the separability of two classes uniform acceleration motion in deep of stereoscopic video. EEG signals were decomposed by the partial noise assisted multivariate empirical mode decomposition(PNA-MEMD)algorithm to obtain the intrinsic mode function(IMF)at each scale. An effective factor based on Jensen-Shannon distance(JSD)was used to select IMF adaptively from two different ranges, and the screening results were combined according to the weights to form a reconstructed signal. At last, the common spatial pattern(CSP)approach was applied to extract spatial features of the reconstructed signals, and the support vector machine(SVM)algorithm was employed to classify the spatial features. The best classification correct rate is 73.16%, which proves the validity of the feature extraction model for two classes of EEG signals.

Key words: EEG, stereoscopic uniform acceleration motion in deep, visual uncomfortable, MEMD(multivariate empirical mode decomposition), CSP(common spatial pattern)

中图分类号: