东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (12): 1755-1759.DOI: 10.12068/j.issn.1005-3026.2019.12.016

• 机械工程 • 上一篇    下一篇

基于Newmark-β法的非线性体系动载荷识别

范玉川1,2, 黄清云3, 鲁艳2, 赵春雨1   

  1. (1. 东北大学 机械工程与自动化学院, 辽宁 沈阳110819; 2. 潍柴动力股份有限公司, 山东 潍坊261001;3. 香港城市大学 工学院, 香港999077)
  • 收稿日期:2018-12-10 修回日期:2018-12-10 出版日期:2019-12-15 发布日期:2019-12-12
  • 通讯作者: 范玉川
  • 作者简介:范玉川(1988-),男,河南辉县人,东北大学博士研究生; 赵春雨(1963-),男,辽宁黑山人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51775094).

Dynamic Load Identification of a Nonlinear System Based on Newmark-β Method

FAN Yu-chuan1,2, HUANG Qing-yun3, LU Yan2, ZHAO Chun-yu1   

  1. 1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China; 2. Weichai Power Company Limited, Weifang 261001, China; 3. College of Engineering, City University of Hong Kong, Hong Kong 999077, China.
  • Received:2018-12-10 Revised:2018-12-10 Online:2019-12-15 Published:2019-12-12
  • Contact: ZHAO Chun-yu
  • About author:-
  • Supported by:
    -

摘要: 基于Newmark-β数值仿真方法,对于刚度变化的单自由度非线性体系,采用修正的Newton-Raphson迭代方法最小化由切线刚度代替变化刚度代入的误差,推导出非线性体系在已知外部激励、体系特性下的动力响应迭代求解过程,并反向推导出在已知动力响应、体系特性下动载荷的反求迭代求解过程.通过算例分析验证了应用该修正迭代方法进行非线性体系的载荷识别是可行的,克服了无迭代方法的误差累积缺点.

关键词: Newmark-β法, Newton-Raphson迭代, 非线性, 载荷识别, 误差累积

Abstract: Based on the Newmark-β numerical simulation method, a modified Newton-Raphson iteration method is used to minimize the substitution error of tangent stiffness for variable stiffness for a single-degree-of-freedom nonlinear system. Then, the iterative solution process of dynamic response of the nonlinear system under the known external excitation and system characteristics is deduced, and the inverse iterative solution process of dynamic load under the known dynamic response and system characteristics is deduced. A numerical example shows that the modified iteration method is feasible for load identification of nonlinear systems and overcomes the shortcoming of error accumulation without the iteration method.

Key words: Newmark-β, Newton-Raphson iteration, nonlinearity, load identification, error accumulation

中图分类号: