东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (1): 7-14.DOI: 10.12068/j.issn.1005-3026.2021.01.002

• 信息与控制 • 上一篇    下一篇

多尺度卷积核U-Net模型的视网膜血管分割方法

杨丹1,2,3, 刘国如1,2, 任梦成1, 裴宏杨1,2   

  1. (1.东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2.东北大学 辽宁省红外光电材料及微纳器件重点实验室, 辽宁 沈阳110819; 3.东北大学 智能工业数据解析与优化教育部重点实验室, 辽宁 沈阳110819)
  • 出版日期:2021-01-15 发布日期:2021-01-13
  • 通讯作者: 杨丹
  • 作者简介:杨丹(1979-),女,辽宁营口人,东北大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(51607029,61836011).

Retinal Blood Vessel Segmentation Method Based on Multi-scale Convolution Kernel U-Net Model

YANG Dan1,2,3, LIU Guo-ru1,2, REN Meng-cheng1, PEI Hong-yang1,2   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. Key Laboratory of Infrared Optoelectric Materials and Micro-nano Devices, Liaoning Province, Northeastern University, Shenyang 110819, China; 3. Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110819, China.
  • Online:2021-01-15 Published:2021-01-13
  • Contact: YANG Dan
  • About author:-
  • Supported by:
    -

摘要: 针对病变视网膜血管结构的计算机辅助诊断问题,提出了一种多尺度卷积核U-Net模型的视网膜血管分割方法.在U-Net模型基础上设计了融合Inception模块和最大索引值上采样方法的多尺度卷积神经网络结构.在网络训练阶段,采取旋转、镜像等操作进行数据集扩充,运用CLAHE算法进行图像预处理;训练后得到的双通道特征图,进行Softmax归一化;最后通过改进的代价损失函数对归一化结果迭代优化,得到完整的视网膜血管分割模型.实验结果表明,所提方法在DRIVE数据集上分割的准确率达到0.9694,灵敏性达到0.7762,特异性达到0.9835,比U-Net模型具有更优的分割效果和泛化能力,与其他现存方法相比具有一定的竞争力.

关键词: 视网膜血管;多尺度卷积核;U-Net模型;Inception模块;CLAHE算法

Abstract: Aiming at the computer-aided diagnosis of diseased retinal vascular structure, a retinal blood vessel segmentation method of multi-scale convolution kernel U-Net model was proposed. Based on the U-Net model, a multi-scale convolutional neural network structure combining with the Inception module and the maximum index value upsampling method was designed. In the network training stage, operations such as rotation and mirroring were used to expand the data sets, and the CLAHE algorithm was used for image preprocessing. The dual-channel feature map obtained after training was normalized by Softmax. Finally, the normalized result was iteratively optimized by the improved cost loss function, then a complete retinal vessel segmentation model was obtained. Experimental results showed that the proposed method on the DRIVE data set achieved an accuracy of 0.9694, a sensitivity of 0.7762, and a specificity of 0.9835. The proposed method has better segmentation effect and generalization ability than the U-Net model, and shows its competitive results compared with other existing methods.

Key words: retinal blood vessel; multi-scale convolution kernel; U-Net model; Inception module; CLAHE algorithm

中图分类号: