东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (11): 1571-1577.DOI: 10.12068/j.issn.1005-3026.2023.11.008

• 信息与控制 • 上一篇    下一篇

一种基于卷积神经网络的胎儿头围自动测量方法

杨超然1, 廖珊珊2, 陈达1, 康雁1,3   

  1. (1. 东北大学 医学与生物信息工程学院, 辽宁 沈阳110169; 2. 中国医科大学附属盛京医院, 辽宁 沈阳110801; 3. 深圳技术大学 健康与环境工程学院, 广东 深圳518118)
  • 发布日期:2023-12-05
  • 通讯作者: 杨超然
  • 作者简介:杨超然(1988-),男,辽宁沈阳人,东北大学博士研究生; 康雁(1964-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(62071311); 国家重点研发计划项目(2018YFC1002900).

Automatic Measurement Method for Fetal Head Circumference Based on Convolution Neural Network

YANG Chao-ran1, LIAO Shan-shan2, CHEN Da1, KANG Yan1,3   

  1. 1. School of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; 2. Shengjing Hospital of China Medical University, Shenyang 110801, China; 3. School of Health Science Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
  • Published:2023-12-05
  • Contact: KANG Yan
  • About author:-
  • Supported by:
    -

摘要: 在产前超声筛查过程中,为了能够帮助医生在丘脑标准平面上快速、精确地测量胎儿头围,提出一种新颖的双分支卷积神经网络直接分割胎儿颅骨边界,2个分支通过共享层相互促进,有效地提高了颅骨边界的分割精度,特别对局部不清晰或者不连续的边界仍然有着较好的分割效果,具有较高的鲁棒性.本方法的测量过程不需要过多的后处理操作,并且模型属于轻量级网络,便于部署.该方法应用在Grand-Challenge中的HC18数据集及从医院采集的300例数据上,均取得了较好的结果,对比其他主流分割网络如U-Net,Res-U-Net,U-Net++,CE-Net等,所提方法具有更高的分割精度及更小的测量误差.

关键词: 产前超声;头围测量;边界分割;卷积神经网络;轻量级

Abstract: In prenatal ultrasound screening, in order to help doctors measure the fetal head circumference quickly and accurately on the standard plane of the thalamus, a novel two-branch convolution neural network is proposed to directly segment the fetal skull boundary. The two branches promote each other through the shared layer, which can improve the segmentation accuracy of the skull boundary effectively. In particular, the proposed method has good segmentation effects and high robustness for locally unclear or discontinuous boundaries. Furthermore, the measurement process of the proposed method does not require excessive post-processing operations, and the model belongs to a lightweight network, which is easy to deploy. Good results were achieved on the HC18 dataset of Grand-Challenge and 300 cases collected from hospitals. Compared with other mainstream segmentation networks such as U-Net, Res-U-Net, U-Net++, CE-Net, etc., the proposed method is with higher segmentation accuracy and smaller measurement error.

Key words: prenatal ultrasound; head circumference measurement; boundary segmentation; convolution neural network; lightweight

中图分类号: