东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (10): 36-43.DOI: 10.12068/j.issn.1005-3026.2025.20240067

• 信息与控制 • 上一篇    下一篇

基于自适应阈值Canny边缘检测的Shi-Tomasi角点检测方法

张铫1,2, 孙宇1, 林清河1, 王怀1   

  1. 1.东北大学秦皇岛分校 计算机与通信工程学院,河北 秦皇岛 066004
    2.东北大学秦皇岛分校 河北省海洋感知网络与数据处理重点实验室,河北 秦皇岛 066004
  • 收稿日期:2024-03-25 出版日期:2025-10-15 发布日期:2026-01-13
  • 作者简介:张 铫(1974—),男,天津人,东北大学秦皇岛分校副教授.

Shi-Tomasi Corner Detection Method Based on Adaptive Threshold Canny Edge Detection

Yao ZHANG1,2, Yu SUN1, Qing-he LIN1, Huai WANG1   

  1. 1.School of Computer and Communication Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China
    2.Hebei Key Laboratory of Marine Perception Network and Data Processing,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China. Corresponding author: SUN Yu,E-mail: 2272167@stu. neu. edu. cn
  • Received:2024-03-25 Online:2025-10-15 Published:2026-01-13

摘要:

传统的Shi-Tomasi角点检测算法已经广泛应用于许多计算机视觉领域中,效率和精度较低,抗噪性能较差,且容易产生伪角点.本文提出了一种融合自适应阈值Canny边缘检测和改进的Shi-Tomasi角点检测的方法:首先,通过改进的Canny边缘检测对图像进行边缘提取并筛选候选角点,同时采用一维信息熵自适应阈值以适应不同的图像环境,从而提高检测的效率和鲁棒性.其次,利用圆形模板进行非极大值抑制,减少误检角点的数量,以增强算法对真实角点的识别能力.最后,在提取的边缘图像上应用改进的Shi-Tomasi算法进行角点检测,从而实现图像的精准定位.实验结果表明,与传统算法相比,所提出的算法在运行时间和准确度上均有显著提升,且在旋转不变性和抗噪性上有明显的优势.

关键词: 角点检测, 自适应阈值, Canny, Shi-Tomasi

Abstract:

The traditional Shi-Tomasi corner detection algorithm has been widely applied in many fields of computer vision. However, this algorithm has low efficiency and accuracy, poor noise resistance, and is prone to producing false corners. A method that combined adaptive threshold Canny edge detection and improved Shi-Tomasi corner detection was proposed. Firstly, improved Canny edge detection was used to extract image edges and screen candidate corner points, while a one-dimensional information entropy adaptive threshold was used to adapt to different image environments, thereby improving the efficiency and robustness of detection. Secondly, using circular templates for non-maximum suppression reduced the number of false corner points and enhanced the algorithm’s ability to recognize true corners. Finally, the improved Shi-Tomasi algorithm was applied to the extracted edge images for corner extraction, thereby achieving accurate image localization. The experimental results show that compared with the traditional algorithm, the proposed method has significant improvements in runtime and accuracy, and it has significant advantages in rotation invariance and noise resistance.

Key words: corner detection, adaptive threshold, Canny, Shi-Tomasi

中图分类号: