| [1] |
饶江平, 杨治争, 李光强, 等. IF钢RH精炼理论研究与工艺优化[J]. 炼钢, 2022, 38(5): 59-66.
|
|
Rao Jiang-ping, Yang Zhi-zheng, Li Guang-qiang, et al. Theoretical study and process optimization of RH refining for IF steel[J]. Steelmaking, 2022, 38(5): 59-66.
|
| [2] |
Feng K, Xu A J, Wu P F, et al. Case-based reasoning model based on attribute weights optimized by genetic algorithm for predicting end temperature of molten steel in RH[J]. Journal of Iron and Steel Research International, 2019, 26(6): 585-592.
|
| [3] |
Lu W, Mao Z Z, Yuan P. Ladle furnace liquid steel temperature prediction model based on optimally pruned bagging[J]. Journal of Iron and Steel Research International, 2012, 19(12): 21-28.
|
| [4] |
Chen G J, Yang J, Li Y G, et al. Mathematical simulation of decarburization with CO2 injection during RH refining of ultra-low-carbon steel[J]. Metals and Materials International, 2025, 31: 167-181.
|
| [5] |
Li Y W, Liu B G, Peng J H, et al. Prediction model of microwave calcining of ammonium diuranate using incremental improved back-propagation neural network[J]. Acta Metallugica Sinica(English Letters), 2011, 24(1): 34-42.
|
| [6] |
Wang S F, Tang Y, Li X B, et al. Analyses and predictions of rock cuttabilities under different confining stresses and rock properties based on rock indentation tests by conical pick[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1766-1783.
|
| [7] |
Lee E H, Kim K, Kho S Y, et al. Estimating express train preference of urban railway passengers based on extreme gradient boosting (XGBoost) using smart card data[J]. Transportation Research Record, 2021, 2675: 64-76.
|
| [8] |
刘志明, 战东平, 葛启桢, 等. 基于BP神经网络的电炉终点碳质量分数预报模型[J]. 工业加热, 2018, 47(4): 28-31.
|
|
Liu Zhi-ming, Zhan Dong-ping, Ge Qi-zhen, et al. Prediction model of mass fraction of endpoint carbon of electric furnace based on BP neural network[J]. Industrial Heating, 2018, 47(4): 28-31.
|
| [9] |
魏付豪, 刘建华, 张游游, 等. RH精炼终点预报模型[J]. 炼钢, 2016, 32(6): 38-44.
|
|
Wei Fu-hao, Liu Jian-hua, Zhang You-you, et al. The endpoint prediction model for RH refining[J]. Steelmaking, 2016, 32(6): 38-44.
|
| [10] |
杨业鹏, 岳峰, 马明胜. RH精炼炉脱碳模型研究[J]. 炼钢, 2020, 36(2): 10-16.
|
|
Yang Ye-peng, Yue Feng, Ma Ming-sheng. Study on decarburization model for RH refining furnace[J]. Steelmaking, 2020, 36(2): 10-16.
|
| [11] |
Heo J, Kim T W, Jung S J, et al. Real-time prediction model of carbon content in RH process[J]. Applied Sciences, 2022, 12(21): 10753-10764.
|
| [12] |
陈超, 农伟民, 王楠. 基于机器学习模型的Consteel电弧炉终点碳含量及温度预测[J]. 冶金自动化, 2023, 47(6): 37-44.
|
|
Chen Chao, Nong Wei-min, Wang Nan. Prediction on end-point carbon content and temperature of Consteel electric arc furnace based on machine learning model[J]. Metallurgical Industry Automation, 2023, 47(6): 37-44.
|
| [13] |
Sun Y, Brown M B, Prapopoulou M, et al. The application of stochastic machine learning methods in the prediction of skin penetration[J]. Applied Soft Computing, 2011, 11(2): 2367-2375.
|
| [14] |
Achour A, Kammoun M A, Hajej Z. Towards optimizing multi-level selective maintenance via machine learning predictive models[J]. Applied Sciences, 2024, 14(1): 313-318.
|
| [15] |
Qu Z, Genton M G. Sparse functional boxplots for multivariate curves[J]. Journal of Computational and Graphical Statistics, 2022, 31(4): 976-989.
|
| [16] |
Er O, Külekci M K, Esme U, et al. Multi response optimization of friction stir spot welding process using Taguchi based grey relational analysis[J]. Cukurova University Journal of the Faculty of Engineering, 2021, 36(2): 421-432.
|
| [17] |
Aydin H, Bayram A, Esme U, et al. Application of grey relation analysis (GRA) and Taguchi method for the parametric optimization of friction stir welding (FSW) process[J]. Materials and Technology, 2010, 44(4): 205-211.
|
| [18] |
柴宝堂, 雷洪, 徐猛, 等. 基于BP神经网络的RH精炼终点钢液温度预测[J]. 炼钢, 2023, 39(5): 33-40,47.
|
|
Chai Bao-tang, Lei Hong, Xu Meng, et al. Predicted temperature of molten steel at the end of RH refining on the base of BP neural network[J]. Steelmaking, 2023, 39(5): 33-40,47.
|
| [19] |
Gaïffas S, Merad I, Yu Y Y. WildWood: a new random forest algorithm[J]. IEEE Transactions on Information Theory, 2023, 69(10): 6586-6604.
|
| [20] |
Tarchoune I, Djebba A, Merouani H F, et al. An improved random forest based on feature selection and feature weighting for case retrieval in CBR system application to medical data[J]. International Journal of Software Innovation, 2022, 10(1): 14-16.
|
| [21] |
Gewers F L, Ferreira G R, Arruda H F, et al. Principal component analysis: a natural approach to data exploration[J]. ACM Computing Surveys, 2021, 54(4): 1-34.
|
| [22] |
Izonin I, Tkachenko R, Shakhovska N, et al. A two-step data normalization approach for improving classification accuracy in the medical diagnosis domain[J]. Mathematics, 2022, 10(11): 1942-1947.
|
| [23] |
Li Z H, Qin L, Guo B S, et al. Characterization of the convoluted 3D intermetallic phases in a recycled Al alloy by synchrotron X-ray tomography and machine learning[J]. Acta Metallugica Sinica(English Letters), 2022, 35(1): 115-123.
|
| [24] |
Zheng Q, Feng B W, Liu Z Y, et al. Application of improved particle swarm optimisation algorithm in hull form optimisation[J]. Journal of Marine Science and Engineering, 2021, 9(9): 955-962.
|