东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (7): 113-130.DOI: 10.12068/j.issn.1005-3026.2025.20250070
• 绿色冶金 • 上一篇
收稿日期:
2025-06-18
出版日期:
2025-07-15
发布日期:
2025-09-24
通讯作者:
唐珏
作者简介:
储满生(1973—),男,安徽岳西人,东北大学教授,博士生导师基金资助:
Man-sheng CHU1,2, Guo-dong WANG3, Jue TANG2,4(), Quan SHI2
Received:
2025-06-18
Online:
2025-07-15
Published:
2025-09-24
Contact:
Jue TANG
摘要:
在数字信息时代的推动下,高炉数字化转型拉开序幕.钢铁企业(简称钢企)应用智能闭环控制、数字孪生和AI预测模型,构建智慧操炉、炉况评价与质量优化等智能系统.数字化高炉研究成果主要集中在变量预测、状态诊断、炉况优化,这些领域由传统方式分别向复杂优化建模、多维综合评价和多目标协同优化方向发展.但目前预测模型需强化在线自更新与数据机理融合,评价体系需注重多维度精细化诊断,炉况优化需以低风险、低成本、多目标耦合为核心突破单指标局限.以高炉现场需求为出发点,开发高炉信息物理系统,将数据、机理和经验合理匹配调用,形成数据治理-规则挖掘-智能预测-综合评价-多目标优化-决策反馈一体化技术是数字化高炉炼铁的未来发展重点之一.
中图分类号:
储满生, 王国栋, 唐珏, 石泉. 数字化高炉炼铁技术研发与应用研究进展[J]. 东北大学学报(自然科学版), 2025, 46(7): 113-130.
Man-sheng CHU, Guo-dong WANG, Jue TANG, Quan SHI. Research Progress on Development and Application of Digital Blast Furnace Ironmaking Technology[J]. Journal of Northeastern University(Natural Science), 2025, 46(7): 113-130.
技术类别 | 国内应用案例与特色 | 国外应用案例与特色 |
---|---|---|
数据采集与传感技术 | 宝钢、本钢、山钢等(温度、压力、气流、料面等操作监控检验数据) | JFE钢铁(AI分析传感器采集单高炉约10 000个点位) |
数据分析与决策支持 | 鞍钢、三钢、宝信等(高炉孪生驾驶舱数据多维解析、120个工序模型耦合计算、“五位一体”模型平台集成工艺知识与实时数据等) | 浦项钢铁、土耳其卡德米尔钢铁(PosFrame平台原燃料与炉况自主分析系统、BFXpert操作人员指导系统与二级控制系统等) |
炉况预测与状态诊断 | 沙钢、宝钢、酒钢等(高炉炉料、气流、渣铁、炉温、炉型、炉况智能评价、预测与诊断系统等) | 浦项钢铁、土耳其卡德米尔钢铁、北美钢铁(PosFrame平台五大变量预测系统、BFXpert高炉诊断系统、高炉行为预测系统等) |
协同优化与智能调度 | 宝钢、青岛特钢、唐钢等(全工厂能源利用协同调度、多基地生产原料调度、铁前一体化平台集成模型、5G+天车等) | 法国齐诺尔钢铁、北美钢铁、俄罗斯Magnitogorsk钢铁(SACHEM炉况协同预警系统、七步式AI流程优化燃料设定点、燃料煤气智能调度等) |
数字孪生与可视化 | 朝阳钢铁、本钢、宝钢等(高炉虚实精准映射、炉内气流与炉料三维可视化平台、炉型三维检测等) | JFE钢铁、俄罗斯Magnitogorsk钢铁(数字孪生体预测8~12 h炉况、机器视觉识别炉料粒度,热力学模型模拟冶炼过程等) |
表1 国内外钢企数字化高炉应用案例对比 (iron and steel enterprises)
Table 1 Comparison of application cases of digital blast furnaces in Chinese and foreign
技术类别 | 国内应用案例与特色 | 国外应用案例与特色 |
---|---|---|
数据采集与传感技术 | 宝钢、本钢、山钢等(温度、压力、气流、料面等操作监控检验数据) | JFE钢铁(AI分析传感器采集单高炉约10 000个点位) |
数据分析与决策支持 | 鞍钢、三钢、宝信等(高炉孪生驾驶舱数据多维解析、120个工序模型耦合计算、“五位一体”模型平台集成工艺知识与实时数据等) | 浦项钢铁、土耳其卡德米尔钢铁(PosFrame平台原燃料与炉况自主分析系统、BFXpert操作人员指导系统与二级控制系统等) |
炉况预测与状态诊断 | 沙钢、宝钢、酒钢等(高炉炉料、气流、渣铁、炉温、炉型、炉况智能评价、预测与诊断系统等) | 浦项钢铁、土耳其卡德米尔钢铁、北美钢铁(PosFrame平台五大变量预测系统、BFXpert高炉诊断系统、高炉行为预测系统等) |
协同优化与智能调度 | 宝钢、青岛特钢、唐钢等(全工厂能源利用协同调度、多基地生产原料调度、铁前一体化平台集成模型、5G+天车等) | 法国齐诺尔钢铁、北美钢铁、俄罗斯Magnitogorsk钢铁(SACHEM炉况协同预警系统、七步式AI流程优化燃料设定点、燃料煤气智能调度等) |
数字孪生与可视化 | 朝阳钢铁、本钢、宝钢等(高炉虚实精准映射、炉内气流与炉料三维可视化平台、炉型三维检测等) | JFE钢铁、俄罗斯Magnitogorsk钢铁(数字孪生体预测8~12 h炉况、机器视觉识别炉料粒度,热力学模型模拟冶炼过程等) |
[1] | 王国栋, 刘振宇, 张殿华, 等. 钢铁企业创新基础设施及研究进展[J]. 钢铁, 2023, 58(9): 2-14. |
Wang Guo-dong, Liu Zhen-yu, Zhang Dian-hua, et al. Steel enterprise innovation infrastructure(SEII) and its research development[J]. Iron & Steel, 2023, 58(9): 2-14. | |
[2] | 石泉, 唐珏, 储满生. 基于工业大数据的智能化高炉炼铁技术研究进展[J]. 钢铁研究学报, 2022, 34(12): 1314-1324. |
Shi Quan, Tang Jue, Chu Man-sheng. Research progress of intelligent blast furnace ironmaking technology based on industrial big data[J]. Journal of Iron and Steel Research, 2022, 34(12): 1314-1324. | |
[3] | 刘小杰, 李天顺, 李欣, 等. 高炉炼铁智能化发展的探讨与展望[J]. 中国冶金, 2025, 35(1): 1-14,31. |
Liu Xiao-jie, Li Tian-shun, Li Xin, et al. Discussion and prospect of intelligent development of blast furnace ironmaking[J]. China Metallurgy, 2025, 35(1): 1-14, 31. | |
[4] | 何家雷, 唐珏, 储满生, 等. 基于大数据的高炉炼铁数据治理及挖掘的研究[J]. 钢铁研究学报, 2024, 36(7): 844-854. |
He Jia-lei, Tang Jue, Chu Man-sheng, et al. Research on data management and mining of blast furnace ironmaking based on big data[J]. Journal of Iron and Steel Research, 2024, 36(7): 844-854. | |
[5] | Wang M Y, Tang J, Chu M S, et al. Prediction and optimization of flue pressure in sintering process based on SHAP[J]. International Journal of Minerals, Metallurgy and Materials, 2025, 32(2): 346-359. |
[6] | 王国栋, 刘振宇, 张殿华, 等. 材料科学技术转型发展与钢铁创新基础设施的建设[J]. 钢铁研究学报, 2021, 33(10): 1003-1017. |
Wang Guo-dong, Liu Zhen-yu, Zhang Dian-hua, et al. Transformation and development of materials science and technology and construction of iron and steel innovation infrastructure[J]. Journal of Iron and Steel Research, 2021, 33(10): 1003-1017. | |
[7] | 周济. 智能制造: “中国制造2025” 的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284. |
Zhou Ji. Intelligent manufacturing: main direction of“made in China 2025”[J]. China Mechanical Engineering, 2015, 26(17): 2273-2284. | |
[8] | 刘然, 张智峰, 刘小杰, 等. 低碳绿色炼铁技术发展动态及展望[J]. 钢铁, 2022, 57(5): 1-10. |
Liu Ran, Zhang Zhi-feng, Liu Xiao-jie, et al. Development trend and prospect of low-carbon green ironmaking technology[J]. Iron & Steel, 2022, 57(5): 1-10. | |
[9] | Shi Q, Tang J, Chu M S. Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(9): 1651-1666. |
[10] | 刘然, 赵伟光, 刘颂, 等. 高炉冶炼智能化的发展与探讨[J]. 钢铁, 2023, 58(5): 1-10. |
Liu Ran, Zhao Wei-guang, Liu Song, et al. Development and discussion of intelligent blast furnace smelting[J]. Iron & Steel, 2023, 58(5): 1-10. | |
[11] | 王国栋, 张殿华, 孙杰. 建设数据驱动的钢铁材料创新基础设施 加速钢铁行业的数字化转型[J]. 冶金自动化, 2023, 47(1): 2-9. |
Wang Guo-dong, Zhang Dian-hua, Sun Jie. Creating data-driven innovation infrastructure for iron and steel material to accelerate digital transformation of iron and steel industry[J]. Metallurgical Industry Automation, 2023, 47(1): 2-9. | |
[12] | 储满生, 王茗玉, 唐珏, 等. 基于大数据的智能化烧结技术研究进展[J]. 钢铁, 2023, 58(9): 26-38. |
Chu Man-sheng, Wang Ming-yu, Tang Jue, et al. Process of intelligent sintering technology based on big data[J]. Iron & Steel, 2023, 58(9): 26-38. | |
[13] | Liu Y X, Jiao K X, Zhang J L, et al. Research progress and future prospects in the service security of key blast furnace equipment[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(10): 2121-2135. |
[14] | 周继红, 陈仁. 钢铁冶金数字化高炉研究[J]. 山西冶金, 2022, 45(2): 91-95. |
Zhou Ji-hong, Chen Ren. Research on digitization of blast furnace in ferrous metallurgy[J]. Shanxi Metallurgy, 2022, 45(2): 91-95. | |
[15] | 王晓慧, 田天弘, 覃京燕, 等. 工业数字孪生数据建模在钢铁行业中的应用研究[J]. 包装工程, 2024, 45(8): 11-20, 517. |
Wang Xiao-hui, Tian Tian-hong, Qin Jing-yan, et al. Application of industrial digital twin data modeling in iron and steel industry[J]. Packaging Engineering, 2024, 45(8): 11-20, 517. | |
[16] | 许永泓, 杨春节, 楼嗣威, 等. 钢铁行业数字孪生研究现状分析和综述[J]. 冶金自动化, 2023, 47(1): 10-23. |
Xu Yong-hong, Yang Chun-jie, Lou Si-wei, et al. Analysis and review of the current research status of digital twins in the iron and steel industry[J]. Metallurgical Industry Automation, 2023, 47(1): 10-23. | |
[17] | 王航天, 何青, 赵赫. 工业互联网推动钢铁行业高端化、智能化、绿色化发展的机理与路径探析[J]. 数字化转型, 2024, 1(2): 31-38. |
Wang Hang-tian, He Qing, Zhao He. Analysis on the mechanism and path of industrial Internet promoting the high-end, intelligent and green gevelopment of steel industry[J]. Digital Transformation, 2024, 1(2): 31-38. | |
[18] | Chen Z P, Wang X Y, Gui W H, et al. A novel sensing imaging equipment under extremely dim light for blast furnace burden surface: starlight high-temperature industrial endoscope[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(4): 893-906. |
[19] | Kalsoom T, Ramzan N, Ahmed S, et al. Advances in sensor technologies in the era of smart factory and industry 4.0[J]. Sensors, 2020, 20(23): 6783. |
[20] | 李宏扬, 刘小杰, 李欣, 等. 高炉炼铁工业互联网平台的应用[J]. 钢铁, 2021, 56(9): 10-18. |
Li Hong-yang, Liu Xiao-jie, Li Xin, et al. Application of industrial Internet platform for blast furnace iron making[J]. Iron & Steel, 2021, 56(9): 10-18. | |
[21] | 刘小杰, 张玉洁, 刘然, 等. 高炉炼铁智能化发展的研究现状与展望[J]. 钢铁研究学报, 2024, 36(5): 545-559. |
Liu Xiao-jie, Zhang Yu-jie, Liu Ran, et al. Research status and prospects of intelligent development of blast furnace ironmaking[J]. Journal of Iron and Steel Research, 2024, 36(5): 545-559. | |
[22] | 张天瑞, 于天彪, 赵海峰, 等. 数据挖掘技术在全断面掘进机故障诊断中的应用[J]. 东北大学学报(自然科学版), 2015, 36(4): 527-531, 541. |
Zhang Tian-rui, Yu Tian-biao, Zhao Hai-feng, et al. Application of data mining technology in fault diagnosis of tunnel boring machine[J]. Journal of Northeastern University (Natural Science), 2015, 36(4): 527-531, 541. | |
[23] | 刘然, 高子扬, 李宏扬, 等. 高炉智能优化系统综述与展望[J]. 中国冶金, 2024, 34(3): 13-24,36. |
Liu Ran, Gao Zi-yang, Li Hong-yang, et al. Overview and prospect of intelligent optimization system for blast furnace[J]. China Metallurgy, 2024, 34(3): 13-24,36. | |
[24] | Wang Y, Wang X P, Tang L X. Evolutionary modeling approach based on multiobjective genetic programming for strip quality prediction[J]. Swarm and Evolutionary Computation, 2024, 86: 101519. |
[25] | Zhao Y M, Wang X P, Song X M. Dynamic multiobjective operation optimization of blast furnace ironmaking process[J]. Advanced Engineering Informatics, 2025, 66: 103402. |
[26] | Lu B, Chen G, Chen D M, et al. An energy intensity optimization model for production system in iron and steel industry[J]. Applied Thermal Engineering, 2016, 100: 285-295. |
[27] | 张颖伟, 高鸿瑞, 张鼎森, 等. 基于多智能体的数字孪生及其在工业中应用的综述[J]. 控制与决策, 2023, 38(8): 2168-2182. |
Zhang Ying-wei, Gao Hong-rui, Zhang Ding-sen, et al. A review of multi-agent-based digital twins and its application in industry[J]. Control and Decision, 2023, 38(8): 2168-2182. | |
[28] | 肖鹏. 高炉炼铁技术创新实践及未来展望[J]. 钢铁, 2021, 56(6): 10-14, 34. |
Xiao Peng. Innovation practice and future prospects of blast furnace ironmaking technology[J]. Iron & Steel, 2021, 56(6): 10-14, 34. | |
[29] | 骆德欢. 智慧制造在宝钢股份宝山基地的实践[J]. 冶金自动化, 2019, 43(1): 31-36, 72. |
Luo De-huan. Practice of intelligent manufacturing in Baoshan base of Baosteel[J]. Metallurgical Industry Automation, 2019, 43(1): 31-36, 72. | |
[30] | 朱仁良. 未来炼铁技术发展方向探讨以及宝钢探索实践[J]. 钢铁, 2020, 55(8): 2-10. |
Zhu Ren-liang. Discussion on future development direction of ironmaking technology and exploratory practice of Baosteel[J]. Iron & Steel, 2020, 55(8): 2-10. | |
[31] | 邹玉贤. 钢铁智慧制造实践与思考[J]. 宝钢技术, 2022(1): 1-9. |
Zou Yu-xian. Practice and thinking of steel smart manufacturing[J]. Baosteel Technology, 2022(1): 1-9. | |
[32] | 孟昕阳, 徐震, 王宝海, 等. 鞍钢高炉孪生驾驶舱与操作评价平台的建设与应用[J]. 鞍钢技术, 2024(5): 7-13, 32. |
Meng Xin-yang, Xu Zhen, Wang Bao-hai, et al. Construction of digital twin cockpit and operation evaluation platform for BF of Ansteel and applications[J]. Angang Technology, 2024(5): 7-13, 32. | |
[33] | 李建军, 胡代超, 刘炳南, 等. 鞍钢高炉大数据可视化平台开发及应用[J]. 鞍钢技术, 2023(3): 15-20. |
Li Jian-jun, Hu Dai-chao, Liu Bing-nan, et al. Construction and application of visualization program for big data system for blast furnaces of Ansteel[J]. Angang Technology, 2023(3): 15-20. | |
[34] | 徐海涛. 本钢高炉智能管理系统的研发与应用[J]. 有色设备, 2023, 37(3): 58-62. |
Xu Hai-tao. Research and application of intelligent management system for Benxi Steel’s blast furnaces[J]. Nonferrous Metallurgical Equipment, 2023, 37(3): 58-62. | |
[35] | 何天庆, 宁武, 王晓雪, 等. 鞍钢朝阳钢铁高炉数字孪生系统构建及应用[J]. 鞍钢技术, 2022(6): 66-71. |
He Tian-qing, Ning Wu, Wang Xiao-xue, et al. Construction of digital twin system for blast furnace in Chaoyang Steel Company of Ansteel and its application[J]. Angang Technology, 2022(6): 66-71. | |
[36] | 谭天雷. 江苏沙钢集团有限公司炼铁管控中心的实践应用[J]. 冶金自动化, 2022, 46(sup1): 10-14. |
Tan Tian-lei. Practice and application of ironmaking control center of Jiangsu Shagang Group Co., Ltd.[J]. Metallurgical Industry Automation, 2022, 46(sup1): 10-14. | |
[37] | 雷鸣, 杜屏, 周夏芝, 等. 沙钢3号高炉炉缸炉底侵蚀结厚智能监测系统[J]. 冶金自动化, 2021, 45(5): 13-22. |
Lei Ming, Du Ping, Zhou Xia-zhi, et al. Intelligent monitoring system for erosion and freezing of hearth and bottom of No.3 blast furnace in Shasteel[J]. Metallurgical Industry Automation, 2021, 45(5): 13-22. | |
[38] | 刘奔. 沙钢智慧设备在线诊断平台[J]. 冶金设备, 2024 (sup1):25-28. |
Liu Ben. Shagang’s smart equipment online diagnostic platform[J]. Metallurgical Equipment, 2024 (sup1): 25-28. | |
[39] | 孔令泽, 姚可佩, 邓映, 等. 宁钢炼铁智能化数字化改革应用实践[J]. 冶金设备, 2024(sup1): 156-158, 63. |
Kong Ling-ze, Yao Ke-pei, Deng Ying, et al. Application practice of intelligent digital reform of ironmaking in Ninggang[J]. Metallurgical Equipment, 2024(sup1): 156-158, 63. | |
[40] | 武晨. 钢铁行业绿色化智能化发展及河钢集团创新实践[J]. 河北冶金, 2023(4): 1-8. |
Wu Chen. Green and intelligent development of the steel industry and HBIS group’s innovative practice[J]. Hebei Metallurgy, 2023(4): 1-8. | |
[41] | 刘二浩, 吴东海, 胡心光, 等. 高炉全炉料层分布智能监测系统的研究与应用[J]. 冶金自动化, 2025, 49(2): 14-23. |
Liu Er-hao, Wu Dong-hai, Hu Xin-guang, et al. Research and application of intelligent monitoring system for burden layer distribution in blast furnace[J]. Metallurgical Industry Automation, 2025, 49(2): 14-23. | |
[42] | 刘旦, 刘晓萍, 葛小亮. 高炉智能管理系统在兴澄特钢的应用[J]. 长江信息通信, 2022, 35(1): 26-28. |
Liu Dan, Liu Xiao-ping, Ge Xiao-liang. Application of blast furnace intelligent management system in Xingcheng Special Steel[J]. Changjiang Information & Communications, 2022, 35(1): 26-28. | |
[43] | 陈伟. 钢铁行业智能制造转型实践: 在高炉冶炼中的应用与优化策略研究[J]. 福建冶金, 2025, 54(2): 57-61. |
Chen Wei. Intelligent manufacturing transformation practice in the steel industry: research on the application and optimization strategies in blast furnace smelting[J]. Fujian Metallurgy, 2025, 54(2): 57-61. | |
[44] | 黄泽海, 刘登峰. 酒钢1号、2号高炉智能诊断系统的研发与应用[J]. 甘肃冶金, 2025, 47(1): 44-47. |
Huang Ze-hai, Liu Deng-feng. Development and application of intelligent diagnostic systems for Jiujiang No.1 and No.2 blast furnaces[J]. Gansu Metallurgy, 2025, 47(1): 44-47. | |
[45] | 杨领芝, 王海波, 陈哲, 等. 青岛特钢铁前系统智能制造优化提升实践[J]. 山东冶金, 2023, 45(4): 43-45,48. |
Yang Ling-zhi, Wang Hai-bo, Chen Zhe, et al. The practice of optimization and promotion for intelligent manufacturing system before ironmaking in Qingdao Special Steel[J]. Shandong Metallurgy, 2023, 45(4): 43-45,48. | |
[46] | 王宏伟. 高炉炼铁中炉料结构的智能优化研究[J]. 山西冶金, 2022, 45(3): 161-162, 179. |
Wang Hong-wei. Study on intelligent optimization of charge structure in blast furnace ironmaking[J]. Shanxi Metallurgy, 2022, 45(3): 161-162, 179. | |
[47] | 浦项加快智能工厂建设[J]. 轧钢, 2018, 35(5): 11. |
(POSCO speeds up the construction of smart factories[J]. Steel Rolling, 2018, 35(5): 11.) | |
[48] | 浦项加快智能化工厂建设[J]. 烧结球团, 2018, 43(4): 63. |
(POSCO accelerates construction of intelligent factories[J]. Sintering and Pelletizing, 2018, 43(4): 63.) | |
[49] | 罗晔.POSCO智能工厂建设进展[J].冶金管理,2021(12):51-55. |
Lou Ye. Progress in POSCO’s smart factory construction[J]. China Steel Focus, 2021 (12): 51-55. | |
[50] | 赵国磊, 孙刘恒, 高成云. 面向信息物理系统架构的高炉炼铁系统智能化设计[J]. 冶金自动化, 2021, 45(3): 11-18. |
Zhao Guo-lei, Sun Liu-heng, Gao Cheng-yun. Intelligent design of blast furnace ironmaking system orienting cyber physical system architecture[J]. Metallurgical Industry Automation, 2021, 45(3): 11-18. | |
[51] | Redchuk A, Walas M F. New business models on artificial intelligence:the case of the optimization of a blast furnace in the steel industry by a machine learning solution[J]. Applied System Innovation, 2021, 5(1): 6-20. |
[52] | Spirin N A, Lavrov V V, Rybolovlev V Y, et al. Digital transformation of pyrometallurgical technologies. state, scientific problems, and prospects of development[J]. Steel in Translation, 2021, 51(8): 522-530. |
[53] | 周文福. 高炉配矿工艺中的成本控制研究[J]. 冶金与材料, 2025, 45(1): 131-133. |
Zhou Wen-fu. Research on cost control in blast furnace ore blending process[J]. Metallurgy and Materials, 2025, 45(1): 131-133. | |
[54] | 赵军. 基于大数据技术的高炉炼铁智能预报系统研究[D]. 沈阳:东北大学, 2021. |
Zhao Jun. Intelligent prediction system for blast furnace ironmaking based on big data technology[D]. Shenyang: Northeastern University, 2021. | |
[55] | Nogami H. Carbon requirement for ironmaking under carbon and hydrogen co-existing atmosphere[J]. ISIJ International, 2019, 59(4): 607-612. |
[56] | 陆熔, 李维国, 陶荣尧. 宝钢炼铁20年的回顾及展望[J]. 炼铁, 2005, 24(sup1): 2-8. |
Lu Rong, Li Wei-guo, Tao Rong-yao. Review and prospect of Baosteel’s ironmaking for 20 years[J]. Ironmaking, 2005, 24(sup1): 2-8. | |
[57] | 刘馨, 张卫军, 石泉, 等. 基于数据挖掘与清洗的高炉操作参数优化[J]. 东北大学学报(自然科学版), 2020, 41(8): 1153-1160. |
Liu Xin, Zhang Wei-jun, Shi Quan, et al. Optimization of blast furnace operating parameters based on data mining and cleaning[J]. Journal of Northeastern University (Natural Science), 2020, 41(8): 1153-1160. | |
[58] | 王国栋, 孙杰. 生成式AI+钢铁:助力钢铁行业中国式现代化[J]. 钢铁研究学报, 2025, 37(4): 405-408. |
Wang Guo-dong, Sun Jie. Generative AI+steel: empowering Chinese-style modernization of steel industry[J]. Journal of Iron and Steel Research, 2025, 37(4): 405-408. | |
[59] | 江德文, 王振阳, 戴建华, 等. 基于支持向量机的高炉煤气利用率预测建模[J]. 中国冶金, 2021, 31(4): 55-63,67. |
Jiang De-wen, Wang Zhen-yang, Dai Jian-hua, et al. Forecast modeling of gas utilization rate of blast furnace based on support vector machine[J]. China Metallurgy, 2021, 31(4): 55–63,67. | |
[60] | 赵军, 李红玮, 刘小杰, 等. 基于XGBoost的高炉透气性指数预测模型[J]. 中国冶金, 2021, 31(3): 22-29. |
Zhao Jun, Li Hong-wei, Liu Xiao-jie, et al. Prediction model of blast furnace permeability index based on XGBoost[J]. China Metallurgy, 2021, 31(3): 22-29. | |
[61] | 赵军, 李宏扬, 李欣, 等. 基于智能模型的高炉煤气利用率预测[J]. 中国冶金, 2021, 31(3): 93-100. |
Zhao Jun, Li Hong-yang, Li Xin, et al. Gas utilization ratio prediction of blast furnace based on intelligent model[J]. China Metallurgy, 2021, 31(3): 93-100. | |
[62] | Jiang D W, Wang Z Y, Li K J, et al. Machine learning models for predicting and controlling the pressure difference of blast furnace[J]. JOM, 2023, 75(11): 4550-4561. |
[63] | 刘颂, 赵亚迪, 张振, 等. 基于集成学习的高炉压差预报模型研究[J]. 电子测量技术, 2022, 45(2): 31-38. |
Liu Song, Zhao Ya-di, Zhang Zhen, et al. Research on blast furnace pressure difference prediction model with integrated learning[J]. Electronic Measurement Technology, 2022, 45(2): 31-38. | |
[64] | Li H Y, Liu X J, Li X, et al. Causality analysis and prediction of blast furnace state based on convergence cross mapping[J]. Ironmaking & Steelmaking, 2022, 49(9): 875-886. |
[65] | Xu H W, Qin W, Sun Y N, et al. Attention mechanism-based deep learning for heat load prediction in blast furnace ironmaking process[J]. Journal of Intelligent Manufacturing, 2024, 35(3): 1207-1220. |
[66] | 罗世华, 董力豪, 王栋, 等. 基于VMD-TCN-GRU组合模型的高炉透气性指数预测[J]. 中国冶金, 2025, 35(5): 150-160. |
Luo Shi-hua, Dong Li-hao, Wang Dong, et al. Prediction for blast furnace permeability index based on VMD-TCN-GRU combined model[J]. China Metallurgy, 2025, 35(5): 150-160. | |
[67] | 石琳, 刘文慧, 曹富军, 等. 基于CEEMDAN-SVM-LSTM的高炉煤气利用率组合预测[J]. 中国测试, 2023, 49(1): 86-91. |
Shi Lin, Liu Wen-hui, Cao Fu-jun, et al. Combined forecast of blast furnace gas utilization rate based on CEEMDAN-SVM-LSTM[J]. China Measurement & Test, 2023, 49(1): 86-91. | |
[68] | 施有恒, 张淑会, 刘小杰, 等. 基于SSA优化的XGBoost-BP融合模型的高炉压差预测[J]. 钢铁研究学报, 2024, 36(8): 1019-1033. |
Shi You-heng, Zhang Shu-hui, Liu Xiao-jie, et al. Prediction of blast furnace pressure difference based on a combined model of XGBoost and BP optimized by SSA[J]. Journal of Iron and Steel Research, 2024, 36(8): 1019-1033. | |
[69] | 靳亚涛, 张玉洁, 刘小杰, 等. 基于EEMD-BAS-RBF的高炉煤气利用率预测[J]. 钢铁研究学报, 2023, 35(11): 1330-1338. |
Jin Ya-tao, Zhang Yu-jie, Liu Xiao-jie, et al. Prediction for utilization rate of blast furnace gas based on EEMD-BAS-RBF[J]. Journal of Iron and Steel Research, 2023, 35(11): 1330-1338. | |
[70] | 孟丽丽, 温金龙, 刘然, 等. 基于BO-Lstm-Catboost模型的高炉透气性指数预测系统[J]. 冶金能源, 2025, 44(3): 67-74. |
Meng Li-li, Wen Jin-long, Liu Ran, et al. BO-Lstm-Catboost model-based prediction system of blast furnace permeability index[J]. Energy for Metallurgical Industry, 2025, 44(3): 67-74. | |
[71] | Gao Z W, Nguang S K, Kong D X. Advances in modelling, monitoring, and control for complex industrial systems[J]. Complexity, 2019, 2019: 2975083. |
[72] | Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: theory and practice[J]. Neurocomputing, 2020, 415: 295-316. |
[73] | Zhou P, Dai P, Song H D, et al. Data-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmaking[J]. IET Control Theory & Applications, 2017, 11(14): 2343-2351. |
[74] | Li Y R, Yang C J. Domain knowledge based explainable feature construction method and its application in ironmaking process[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104197. |
[75] | Jiang K, Jiang Z H, Xie Y F, et al. Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2512114. |
[76] | Li J P, Hua C C, Yang Y N, et al. A novel MIMO T-S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputs[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(6): 1654-1666. |
[77] | Li J P, Hua C C, Yang Y N. A novel multiple-input-multiple-output random vector functional-link networks for predicting molten iron quality indexes in blast furnace[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11309-11317. |
[78] | Li J P, Hua C C, Qian J L, et al. Low-rank based multi-input multi-output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace[J]. Fuzzy Sets and Systems, 2021, 421: 178-192. |
[79] | 李壮年. 基于大数据挖掘的大型高炉关键工艺参数预测和优化[D]. 沈阳:东北大学, 2020. |
Li Zhuang-nian. Prediction and optimization of key process parameters of large blast furnace based on big data mining[D]. Shenyang: Northeastern University, 2020. | |
[80] | 乔俊飞, 黄卫民, 丁海旭, 等. 复杂工业过程特征建模方法及应用研究[J]. 控制与决策, 2023, 38(8): 2063-2078. |
Qiao Jun-fei, Huang Wei-min, Ding Hai-xu, et al. Research on feature modeling method for complex industrial process and its application[J]. Control and Decision, 2023, 38(8): 2063-2078. | |
[81] | Zheng H Y, Ding Y Q, Zhou S F, et al. Viscosity prediction model for blast furnace slag with high Al2O3 [J]. Steel Research International, 2021, 92: 1900635. |
[82] | Jiang D W, Zhang J L, Wang Z Y, et al. A prediction model of blast furnace slag viscosity based on principal component analysis and K-nearest neighbor regression[J]. JOM, 2020, 72(11): 3908-3916. |
[83] | Li Z, Wang M, Xu R, et al. Prediction of viscosity of blast furnace slag based on NRBO-DNN model[J]. Alexandria Engineering Journal, 2025, 119: 124-137. |
[84] | 孟丽丽, 彭垚, 刘然, 等. 基于VMD-PSO-BiLSTM的高炉炉渣碱度预测模型[J]. 冶金能源, 2025, 44(3): 36-41. |
Meng Li-li, Peng Yao, Liu Ran, et al. Prediction model for blast furnace slag alkalinity based on VMD-PSO-BiLSTM[J]. Energy for Metallurgical Industry, 2025, 44(3): 36-41. | |
[85] | Azadi P, Winz J, Leo E, et al. A hybrid dynamic model for the prediction of molten iron and slag quality indices of a large-scale blast furnace[J]. Computers & Chemical Engineering, 2022, 156: 107573. |
[86] | 惠佳豪. 基于特征工程的高炉炉渣黏度和炉缸活跃性预测[D]. 西安: 西安建筑科技大学, 2024. |
Hui Jia-hao. Predicting slag viscosity and hearth activity of blast furnacebased on feature engineering[D]. Xi’an: Xi’an University of Architecture and Technology, 2024. | |
[87] | Chen C L, Hsieh C T, Chao Y C. Expert system for real-time control of an ironmaking reactor[J]. International Journal of Systems Science, 1992, 23(1): 17-35. |
[88] | 徐万仁, 张永忠, 吴铿. 高炉炉缸活性状态的表征及改善途径[J]. 炼铁, 2010, 29(3): 23-26. |
Xu Wan-ren, Zhang Yong-zhong, Wu Keng. Characterization and improvement approaches of blast furnace hearth activity state[J]. Ironmaking, 2010, 29(3): 23-26. | |
[89] | Dai B, Long H M, Ji Y L, et al. Theoretical and practical research on relationship between blast air condition and hearth activity in large blast furnace[J]. Metallurgical Research & Technology, 2020, 117(1): 113-118. |
[90] | 代兵, 梁科, 王学军, 等. 高炉炉缸活性量化计算模型的开发与实践[J]. 中国冶金, 2015, 25(12): 45-49. |
Dai Bing, Liang Ke, Wang Xue-jun, et al. Development and practice of quantitative calculation models of blast furnace hearth activity[J]. China Metallurgy, 2015, 25(12): 45-49. | |
[91] | 张贺顺, 马洪斌. 首钢2号高炉炉缸工作状态探析[J]. 炼铁, 2009, 28(4): 11. |
Zhang He-shun, Ma Hong-bin. Analysis on working conditions of No.2 blast furnace hearth in shougang iron and steel Co., Ltd.[J]. Ironmaking, 2009, 28(4): 11. | |
[92] | 刘小杰, 温梁亦欣, 张玉洁, 等. 基于理论分析和智能算法的高炉炉缸活性预测模型[J]. 中国冶金, 2024, 34(2): 83-95. |
Liu Xiao-jie, Wen Liang-yi-xin, Zhang Yu-jie, et al. Prediction model of blast furnace hearth activity based on theoretical analysis and intelligent algorithm[J]. China Metallurgy, 2024, 34(2): 83-95. | |
[93] | Deng Y, Liu R, Li T, et al. The quantitative model of hearth activity based on data mining and characteristics of deadman[J]. Metallurgical Research & Technology, 2023, 120(1): 235-255. |
[94] | Zhou D D, Cheng S S, Zhang R X, et al. Uniformity and activity of blast furnace hearth by monitoring flame temperature of raceway zone[J]. ISIJ International, 2017, 57(9): 1509-1516. |
[95] | 孙梦园. 基于改进ICA算法的高炉故障诊断方法[D]. 杭州: 浙江大学, 2017. |
Sun Meng-yuan. A fault diagnosis method for blast furnaces based on improved ICA algorithm[D]. Hangzhou: Zhejiang University, 2017. | |
[96] | 罗超. 基于多智能体的高炉故障诊断方法研究[D]. 沈阳: 东北大学, 2013. |
Luo Chao. Research of blast furnace fault diagnosis method based on multi-agent[D]. Shenyang: Northeastern University, 2013. | |
[97] | Liu J, Wang S. Construction of the inference engine of blast furnace expert system[J]. Journal of Iron and Steel Research(International),1998,5(2):24-29. |
[98] | Naito M, Takeda K, Matsui Y. Ironmaking technology for the last 100 years: deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process[J]. ISIJ International, 2015, 55(1): 7-35. |
[99] | Otsuka K, Matoba Y, Kajiwara Y, et al. A hybrid expert system combined with a mathematical model for blast furnace operation[J]. ISIJ International, 1990, 30(2): 118-127. |
[100] | 刘祥官, 曾九孙, 郝志忠, 等.多模型集成的高炉炼铁智能控制专家系统[J]. 浙江大学学报(工学版), 2007, 41(10): 1637-1642. |
Liu Xiang-guan, Zeng Jiu-sun, Hao Zhi-zhong, et al. Multi-model integrated intelligent control expert system for blast furnace ironmaking[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(10): 1637-1642. | |
[101] | Lee K, Ki J H. Rise of latecomers and catch-up cycles in the world steel industry[J]. Research Policy, 2017, 46(2): 365-375. |
[102] | Li H Y, Bu X P, Liu X J, et al. Evaluation and prediction of blast furnace status based on big data platform of ironmaking and data mining[J]. ISIJ International, 2021, 61(1): 108-118. |
[103] | Hu Y F, Zhou H, Yao S, et al. Comprehensive evaluation of the blast furnace status based on data mining and mechanism analysis[J]. International Journal of Chemical Reactor Engineering, 2022, 20(2): 225-235. |
[104] | 刘金祥, 孟丽丽, 刘然, 等. 基于FA-KM-SPC的高炉评价监测系统[J]. 中国冶金, 2024, 34(11): 61-74. |
Liu Jin-xiang, Meng Li-li, Liu Ran, et al. Blast furnace evaluation monitoring system based on FA-KM-SPC[J]. China Metallurgy, 2024, 34(11): 61-74. | |
[105] | 李红玮, 李欣, 刘小杰, 等. 基于大数据挖掘的钒钛高炉综合运行状态评价模型[J]. 钢铁, 2023, 58(10): 51-66. |
Li Hong-wei, Li Xin, Liu Xiao-jie, et al. Evaluation model for comprehensive operation condition of vanadium and titanium blast furnace based on big data mining[J]. Iron & Steel, 2023, 58(10): 51-66. | |
[106] | 王坤明. 基于大数据挖掘的高炉生产状态诊断与预报系统研究[D]. 唐山:华北理工大学, 2023. |
Wang Kun-ming. Study on blast furnace production status diagnosis and forecasting system based on big data mining[D]. Tangshan: North China University of Science and Technology, 2023. | |
[107] | Cui G M, Yao Y Q, Ma X, et al. Fuzzy comprehensive evaluation model of pulverized coal digestibility in blast furnace raceway based on the fusion of subjective and objective evidence[J]. ISIJ International, 2019, 59(12): 2149-2155. |
[108] | 张胜男. 基于专家知识与数据相结合的高炉炉况综合评价[D]. 包头:内蒙古科技大学, 2020. |
Zhang Sheng-nan. Comprehensive evaluation of blast funace conditions based on the combination of expert knowledge and data[D]. Baotou: Inner Mongolia University of Science and Technology, 2020. | |
[109] | 安剑奇, 郭云鹏, 张新民, 等. 高炉炼铁过程智能感知、诊断与控制方法的研究现状与展望[J]. 冶金自动化, 2024, 48(2): 2-23. |
An Jian-qi, Guo Yun-peng, Zhang Xin-min, et al. Research status and prospects of intelligent sensing, diagnosis and control method of blast furnace ironmaking processes[J]. Metallurgical Industry Automation, 2024, 48(2): 2-23. | |
[110] | 刘振. 基于贝叶斯网络(Bayesian networks)方法的高炉故障诊断研究[D]. 武汉: 武汉科技大学, 2015. |
Liu Zhen. Research of blast furnace fault diagnosis based on Bayesian networks[D]. Wuhan: Wuhan University of Science and Technology, 2015. | |
[111] | 严如强, 周峥, 杨远贵, 等. 可解释人工智能在工业智能诊断中的挑战和机遇:归因解释[J].机械工程学报, 2024, 60(12): 21-40. |
Yan Ru-qiang, Zhou Zheng, Yang Yuan-gui, et al. Challenges and opportunities of XAI in industrial intelligent diagnosis:attribution interpretation[J]. Journal of Mechanical Engineering, 2024, 60(12): 21-40. | |
[112] | 张宗旺, 车晓锐, 张宏博. 高炉多目标优化模型的建立及验证[J]. 过程工程学报, 2017, 17(1): 178-182. |
Zhang Zong-wang, Che Xiao-rui, Zhang Hong-bo. Establishment and validation of multi-objective optimization model of blast furnace[J]. The Chinese Journal of Process Engineering, 2017, 17(1): 178-182. | |
[113] | Liu Z D, Fang Y M, Liu L, et al. Dynamic Harris hawks optimizer based on historical information and tournament strategy and its application in numerical optimization of blast furnace ingredients[J]. Applied Soft Computing, 2024, 164: 111976. |
[114] | Liu R, Gao Z Y, Li H Y, et al. Research on blast furnace ingredient optimization based on improved grey wolf optimization algorithm[J]. Metals, 2024, 14(7): 798-823. |
[115] | 李壮年, 储满生, 柳政根, 等. 基于机器学习和遗传算法的高炉参数预测与优化[J]. 东北大学学报(自然科学版), 2020, 41(9): 1262-1267. |
Li Zhuang-nian, Chu Man-sheng, Liu Zheng-gen, et al. Prediction and optimization of blast furnace parameters based on machine learning and genetic algorithm[J]. Journal of Northeastern University (Natural Science), 2020, 41(9): 1262-1267. | |
[116] | Parihar M S, Nistala S H, Kumar R, et al. Optimization of blast furnace ironmaking using machine learning and genetic algorithms[J]. Steel Research International, 2025, 96(4): 2300788. |
[117] | Zhou Q, Yin Y L, Peng D G, et al. Multi-objective optimization of blast furnace dosing and operation based on NSGA-II[C]//2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT). Shanghai, 2022: 165-169. |
[118] | 张琦, 姚彤辉, 蔡九菊. 高炉炼铁过程多目标优化模型的研究及应用[J]. 东北大学学报(自然科学版), 2011, 32 (2): 270-273. |
Zhang Qi, Yao Tong-hui, Cai Jiu-ju. On the multi-objective optimal model of blast furnace iron making process and its application[J]. Journal of Northeastern University(Natural Science), 2011, 32(2): 270-273. | |
[119] | Li Y J, Li H Q, Zhang J, et al. Burden surface decision using MODE with TOPSIS in blast furnace ironmkaing[J]. IEEE Access, 2020, 8: 35712-35725. |
[120] | Morales-Hernández A, Van Nieuwenhuyse I, Rojas G S. A survey on multi-objective hyperparameter optimization algorithms for machine learning[J]. Artificial Intelligence Review, 2023, 56(8): 8043-8093. |
[121] | 田伟健. 钢铁企业能源互补协同的多目标优化调度模型研究[D]. 北京: 北京科技大学, 2024. |
Tian Wei-jian. Research on the multi-objective optimization scheduling model for energy complementation and collaboration in iron and steel plants[D]. Beijing: University of Science and Technology Beijing, 2024. | |
[122] | 柴天佑,郑锐, 邢方新, 等. 工业过程控制智能化及未来发展展望[J]. 中国科学(信息科学), 2025, 55(7): 1555-1570. |
Chai Tian-you, Zheng Rui, Xing Fang-xin, et al. Intelligence for industrial process control: development and prospects[J]. Science China( Information Sciences), 2025, 55(7): 1555-1570. | |
[123] | Shi Q, Tang J, Chu M S. Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(6): 1228-1240. |
[124] | Shi Q, Tang J, Chu M S. Process metallurgy and genetic algorithm multi-objective optimization of blast furnace hearth working state[J]. Steel Research International, 2025, 96(6): 2300671. |
[125] | Shi Q, Tang J, Chu M S. Evaluation, prediction, and feedback of blast furnace hearth activity based on data-driven analysis and process metallurgy[J]. Steel Research International, 2024, 95(2): 2300385. |
[126] | Wang M Y, Chu M S, Tang J, et al. Comprehensive evaluation, prediction, and optimization of sintering state[J]. Metallurgical and Materials Transactions B, 2025, 56(2): 2035-2046. |
[127] | Zhang Z, Tang J, Chu M S, et al. Evolution mechanism of blast furnace cooling plate slag-hanging behavior with different cooling system structure[J]. Steel Research International, 2025, 96(1): 2400490. |
[128] | 张振, 唐珏, 储满生, 等. 高炉冷却板挂渣能力数值模拟分析[J]. 钢铁, 2024, 59(11): 54-64. |
Zhang Zhen, Tang Jue, Chu Man-sheng, et al. Slag-hanging capacity numerical simulation and analysis of blast furnace copper cooling plate[J]. Iron & Steel, 2024, 59(11): 54-64. | |
[129] | 齐月松, 储满生, 唐珏, 等. 基于大数据技术的高炉数据治理研究进展[J]. 冶金自动化, 2023, 47(1): 43-52. |
Qi Yue-song, Chu Man-sheng, Tang Jue, et al. Research progress of blast furnace data governance based on big data technology[J]. Metallurgical Industry Automation, 2023, 47(1): 43-52. | |
[130] | 王国栋. 科技创新与产业创新深度融合推动我国钢铁工业发展新质生产力[J]. 中国科技产业, 2024 (10): 4-6. |
Wang Guo-dong. Deep integration of scientific and industrial innovation promotes the development of new quality productive forces in China’s iron and steel industry[J]. Science & Technology Industry of China, 2024(10): 4-6. | |
[131] | 铁区一体化智能化炼铁技术开发与应用[N]. 世界金属导报,2025-02-25(B05). |
(Integrated and intelligent ironmaking technology development and application in the iron-making zone[N].World Metal News, 2025-02-25(B05).) |
[1] | 李美杭, 苗思雨, 张巍巍, 胡恩柱. 钢铁冶金废渣活化过硫酸盐降解丁基黄药[J]. 东北大学学报(自然科学版), 2024, 45(2): 187-192. |
[2] | 李海峰, 杨巧婷, 邵磊, 邹宗树. 高炉内料层结构动态追踪的技术开发[J]. 东北大学学报(自然科学版), 2023, 44(5): 617-625. |
[3] | 刘晓宏, 温治, 肖永力, 楼国锋. 气淬作用下熔渣粒化机理及破碎效果分析[J]. 东北大学学报(自然科学版), 2023, 44(10): 1424-1430. |
[4] | 房晓晴, 刘书含, 孙文强. 高炉煤气管网水力建模及调度策略[J]. 东北大学学报(自然科学版), 2023, 44(1): 69-75. |
[5] | 史本慧, 刘炳南, 罗志国, 邹宗树. 热风在高炉热风围管中流动特性的模拟研究[J]. 东北大学学报(自然科学版), 2022, 43(5): 755-760. |
[6] | 郭永春, 郑海燕, 胡心光, 沈峰满. CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型[J]. 东北大学学报(自然科学版), 2021, 42(5): 652-657. |
[7] | 李壮年, 储满生, 柳政根, 李宝峰. 基于机器学习和遗传算法的高炉参数预测与优化[J]. 东北大学学报:自然科学版, 2020, 41(9): 1262-1267. |
[8] | 刘馨, 张卫军, 石泉, 周乐. 基于数据挖掘与清洗的高炉操作参数优化[J]. 东北大学学报:自然科学版, 2020, 41(8): 1153-1160. |
[9] | 康月, 刘超, 张玉柱, 姜茂发. 气淬法粒化高炉渣实验研究[J]. 东北大学学报:自然科学版, 2020, 41(2): 212-216. |
[10] | 杜培培, 张玉柱, 龙跃. Mk对调质高炉渣制备矿渣棉过程中熔渣性能影响[J]. 东北大学学报:自然科学版, 2019, 40(9): 1279-1283. |
[11] | 马小刚, 陈良玉, 李杨. 基于响应面法炉腹异型管铜冷却壁的长寿技术优化[J]. 东北大学学报:自然科学版, 2019, 40(5): 710-715. |
[12] | 康月, 刘超, 张玉柱, 姜茂发. 气淬法制备高炉渣玻璃微珠的性能[J]. 东北大学学报:自然科学版, 2019, 40(2): 202-206. |
[13] | 郁肖兵, 倪文杰, 邹宗树. 富氧高炉综合模型[J]. 东北大学学报:自然科学版, 2018, 39(9): 1248-1253. |
[14] | 丁智敏, 姜鑫, 魏国, 沈峰满. 软熔带类型对高炉内未燃煤粉分布影响的数值模拟[J]. 东北大学学报:自然科学版, 2018, 39(9): 1242-1247. |
[15] | 孟繁超, 邹宗树. 高炉热储备区温度对煤气利用率的影响[J]. 东北大学学报:自然科学版, 2018, 39(7): 985-989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||