东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (10): 1447-1452.DOI: 10.12068/j.issn.1005-3026.2017.10.016

• 机械工程 • 上一篇    下一篇

考虑三维结合部形貌的静摩擦因数非线性分形模型

潘五九, 李小彭, 王雪, 李木岩   

  1. (东北大学 机械工程与自动化学院, 辽宁 沈阳110819)
  • 收稿日期:2016-05-09 修回日期:2016-05-09 出版日期:2017-10-15 发布日期:2017-10-13
  • 通讯作者: 潘五九
  • 作者简介:潘五九(1986-),男,安徽当涂人,东北大学博士研究生; 李小彭(1976-),男,江西宁都人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51275079,51575091); 中央高校基本科研业务专项资金资助项目(N160306003).

Nonlinear Fractal Model for Static Friction Coefficient Considering Three-Dimensional Topography of Joint Surfaces

PAN Wu-jiu, LI Xiao-peng, WANG Xue, LI Mu-yan   

  1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.
  • Received:2016-05-09 Revised:2016-05-09 Online:2017-10-15 Published:2017-10-13
  • Contact: LI Xiao-peng
  • About author:-
  • Supported by:
    -

摘要: 考虑三维结合部形貌的W-M函数,推导了结合部静摩擦因数非线性分形理论模型.数值模拟了考虑三维形貌的结合部静摩擦因数与法向载荷P、分形维数D、分形尺度系数G的关系,以及在二维分形和三维分形模型中的差异.结果表明:结合部静摩擦因数与法向载荷成单调递增关系,与分形尺度系数成单调递减关系.当D小于2.5时,静摩擦因数随分形维数的增大而增大;当D大于2.5时,静摩擦因数随分形维数的增大而减小;三维分形下的静摩擦因数小于二维分形下的静摩擦因数.

关键词: 三维形貌, 结合部, 静摩擦因数, 分形理论, 非线性

Abstract: Considering three-dimensional topography W-M function of joint surfaces, a nonlinear fractal model for static friction coefficient considering three-dimensional topography of joint surfaces was established. Relations between the static friction coefficient considering three-dimensional topography of joint surfaces and normal load, the fractal dimension, fractal roughness were numerically simulated, as well as the difference between static friction coefficients in the two-dimensional fractal model and three dimensional fractal model. The results showed that the static friction coefficient increases monotonically with the increase of normal load, and decreases monotonically with the increase of topothesy. When D is less than 2.5, the static friction coefficient increases with the increase of fractal dimension; when the D is greater than 2.5, the static friction coefficient decreases with the increase of fractal dimension; the three-dimensional fractal static friction coefficient is smaller than that of the two-dimensional.

Key words: three-dimensional topography, joint surfaces, static friction coefficient, fractal theory, nonlinear

中图分类号: