东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (4): 501-505.DOI: 10.12068/j.issn.1005-3026.2018.04.010

• 材料与冶金 • 上一篇    下一篇

回火温度对高Cr马氏体耐热钢组织与性能的影响

崔辰硕1, 高秀华1, 苏冠侨1, 权秀2   

  1. (1. 东北大学 轧制技术及连轧自动化国家重点试验室, 辽宁 沈阳110819; 2. 江苏淮安振达钢管企业有限公司, 江苏 淮安223001)
  • 收稿日期:2016-11-01 修回日期:2016-11-01 出版日期:2018-04-15 发布日期:2018-04-10
  • 通讯作者: 崔辰硕
  • 作者简介:崔辰硕(1991-), 男, 河南商丘人,东北大学博士研究生; 高秀华(1966-),女,河北唐山人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51171041).国家高技术研究发展计划项目(2015AA03A501).

Effect of Tempering Temperature on Microstructure and Mechanical Properties of High Cr Martensitic Heat Resistant Steel

CUI Chen-shuo 1, GAO Xiu-hua1, SU Guan-qiao 1, QUAN Xiu 2   

  1. 1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; 2. Jiangsu Huaian Zhenda Steel Enterprise Co., Ltd., Huaian 223001, China.
  • Received:2016-11-01 Revised:2016-11-01 Online:2018-04-15 Published:2018-04-10
  • Contact: GAO Xiu-hua
  • About author:-
  • Supported by:
    -

摘要: 利用光学显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)及电子探针(EPMA)等手段,系统研究了不同回火温度下9%Cr马氏体耐热钢的组织及力学性能变化.结果表明:回火后位错网络化、析出相形态、板条马氏体破碎化等是影响力学性能变化的主要因素.正火并760℃回火后在室温和550℃条件下抗拉强度分别达到657和556MPa,0℃冲击功达到285J,此回火温度下实验钢具有最佳综合力学性能.700, 820,850℃回火,韧性大幅降低.高温服役条件下不发生粗化的MX相弥散分布在铁素体和马氏体中,与马氏体高温回复形成的亚稳态多边形结构有效提升耐热钢抗高温蠕变性能.

关键词: 回火温度, 马氏体, 析出, 位错网络, 耐热钢

Abstract: The microstructure and mechanical properties of 9% chromium martensitic heat resistant steel tempered at different temperature were investigated with the OM,TEM, SEM and EPMA.The results showed that the dislocation network,precipitation phase and lath martensite fragmentation after tempering were the main factors for the variations of mechanical properties. It was found that after normalizing and tempering at 760℃, the test steel had an excellent integrated mechanical properties, where the tensile strength at room temperature and 550℃ reached 657MPa and 556MPa, respectively, and the impact absorbing energy at 0℃ reached 285J. Tempering at 700, 820 and 850℃, promoted a substantial reduction in toughness. Under a high temperature service, the MX phase was dispersed uniformly in the ferrite and martensite without coarsening, and metastable polygonal structure was formed during the recovery of martensite at high temperature. Such combination of substructure and dispersed distribution can effectively enhance the high-temperature creep resistance of this heat-resistant steel.

Key words: tempering temperature, martensite, precipitation, dislocation network, heat resistant steel

中图分类号: