东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (1): 150-152.DOI: 10.12068/j.issn.1005-3026.2019.01.028
• 数学 • 上一篇
钱金花, 付雪山
QIAN Jin-hua, FU Xue-shan
摘要: 在三维闵可夫斯基(Minkowski)空间中定义了以类时曲线为脊线的圆纹(canal)曲面,并对温加顿(Weingarten)圆纹曲面进行了分类.与三维欧氏空间类似,首先以类时曲线的伏雷内(Frenet)标架为基础,结合圆纹曲面的几何定义,得到了伪正交标架下以类时曲线为脊线的圆纹曲面的参数方程.然后,建立此类圆纹曲面的基本理论,包括第一、第二基本量,高斯曲率和平均曲率等.在此基础上,得到了高斯曲率和平均曲率之间的关系,并对Weingarten圆纹曲面进行了详细的讨论.得到了三维Minkowski空间中以类时曲线为脊线的Weingarten圆纹曲面是管道曲面或者旋转曲面的结论.
中图分类号: