东北大学学报(自然科学版) ›› 2011, Vol. 32 ›› Issue (6): 838-842.DOI: -

• 论著 • 上一篇    下一篇

齿轮随机参数系统非线性振动响应可靠性分析

孙志礼;袁哲;   

  1. 东北大学机械工程与自动化学院;沈阳建筑大学交通与机械工程学院;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    国家科技重大专项(2009ZX04014-014)

Reliability analysis of nonlinear vibration response for gear system with stochastic parameters

Sun, Zhi-Li (1); Yuan, Zhe (2)   

  1. (1) School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; (2) College of Traffic and Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • Received:2013-06-19 Revised:2013-06-19 Published:2013-04-04
  • Contact: Yuan, Z.
  • About author:-
  • Supported by:
    -

摘要: 以单位振动周期内随机振幅超限作为失效准则,定义了随机参数结构系统的振动响应可靠度.将非线性振动数值求解与动力可靠性理论结合起来,利用随机过程中的水平跨越分析方法推导了齿轮非线性系统振动响应可靠度的计算公式,并计算了齿轮间隙非线性随机参数系统的振动响应可靠度.研究表明,该方法对复杂的齿轮非线性随机参数系统的振动响应可靠度的计算是有效的.齿轮间隙非线性振动响应为周期振动时,随机参数系统的振幅变化不大.随着频率比的变化,当响应进入混沌振动状态时,随机参数系统在一个周期内极易产生失效振幅,振动可靠度较低.因此,设计时应避开混沌振动区域.

关键词: 齿轮, 非线性振动, 随机过程, 随机参数, 可靠性

Abstract: The reliability of nonlinear vibration response for gear system with stochastic parameters is defined with the failure criteria that the random amplitude exceeds the prescribed value in a vibration cycle. With a combination of the numerical solution of nonlinear vibration and dynamic reliability theory, this paper deduces the nonlinear vibration response reliability formula by up-crossing approach for gear system, and calculates the reliability of a gear system with stochastic parameters. The study shows that the approach is efficient to calculate such vibration response reliability of complex gear system. The amplitude of the system changes little when the nonlinear vibration response is periodic. However, when the response turns to be chaotic vibration due to the change of frequency ratio, the system is easy to fail within one amplitude period. As a result, the reliability is very low. The chaotic vibration thus needs to be avoided in the design.

中图分类号: