东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (6): 761-767.DOI: 10.12068/j.issn.1005-3026.2021.06.001

• 信息与控制 •    下一篇

基于电流观测器的链式STATCOM反步控制方法

于洪亮1, 王旭1, 杨丹1,2, 李维军1,3   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 东北大学 智能工业数据解析与优化教育部重点实验室,辽宁 沈阳110819; 3. 辽宁石油化工大学 机械工程学院, 辽宁 抚顺113001)
  • 修回日期:2020-10-05 接受日期:2020-10-05 发布日期:2021-06-23
  • 通讯作者: 于洪亮
  • 作者简介:于洪亮(1980-),男,山东莱州人,东北大学博士研究生; 王旭(1956-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51607029).

Backstepping Control Method of Cascaded STATCOM Based on a Current Observer

YU Hong-liang1, WANG Xu1, YANG Dan1,2, LI Wei-jun1,3   

  1. 1.School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2.Key Laboratory of Intelligent Industry Data Analysis and Optimization of the Ministry of Education, Northeastern University, Shenyang 110819, China; 3. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China.
  • Revised:2020-10-05 Accepted:2020-10-05 Published:2021-06-23
  • Contact: WANG Xu
  • About author:-
  • Supported by:
    -

摘要: 针对电网中链式静态同步补偿器(STATCOM)系统的非线性特性和不确定性,提出了一种基于高增益自适应观测器的链式STATCOM反步控制方法.针对STATCOM的输出电流值的估计,设计了一种基于神经网络高增益观测器,通过引入径向基函数(RBF)神经网络,对模型参数变化进行估计,通过反馈设计,对系统进行线性化处理,利用反步法实现电压控制器设计.结合李雅普诺夫的渐近稳定性理论,获得链式STATCOM输出无功电流的控制.仿真和实验结果进一步验证了控制方法的正确性和有效性.

关键词: 链式静态同步补偿器;高增益观测器;径向基函数神经网络;反步;Lyapunov理论

Abstract: Aiming at the nonlinearity and uncertainty of the cascaded static synchronous compensator (STATCOM) system in power grid, a cascaded STATCOM backstepping control method was proposed based on a high gain adaptive observer. In order to estimate the output current value of STATCOM, an adaptive observer was designed based on neural network. The uncertain disturbance was estimated by introducing radial basis function (RBF) neural network. Through feedback design, the system was linearized. The back-stepping method was used to design the voltage controller. Based on Lyapunov’s asymptotic stability theory, the output reactive current control of cascaded STATCOM was obtained. The simulation and experimental results further verify the correctness and effectiveness of the proposed control method.

Key words: cascaded static synchronous compensator; a high gain observer; radial basis function neural network; backstepping; Lyapunov theory

中图分类号: