东北大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (8): 1080-1088.DOI: 10.12068/j.issn.1005-3026.2022.08.003

• 信息与控制 • 上一篇    下一篇

一种左心室压力个性化估计模型参数子集选择方法

柳军1,2, 郝丽玲1, 何光宇3, 徐礼胜1,3   

  1. (1. 东北大学 医学与生物信息工程学院, 辽宁 沈阳110169; 2. 中国医科大学 生物医学工程系, 辽宁 沈阳110122; 3. 沈阳东软智能医疗科技研究院有限公司, 辽宁 沈阳110167)
  • 修回日期:2021-09-14 接受日期:2021-09-14 发布日期:2022-08-11
  • 通讯作者: 柳军
  • 作者简介:柳军(1981-),男,山东烟台人,东北大学博士研究生; 徐礼胜(1975-),男,安徽安庆人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61773110); 沈阳市科学技术计划项目(20-201-4-10); 中央高校基本科研业务费专项资金资助项目(N2119008); 沈阳东软智能医疗科技研究院有限公司会员课题基金资助项目(MCMP062002).

A Method of Model Parameters Subset Selection for Left Ventricle Pressure Waveform Individual Estimation

LIU Jun1,2, HAO Li-ling1, HE Guang-yu3, XU Li-sheng1,3   

  1. 1. College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; 2. Department of Biomedical Engineering, China Medical University, Shenyang 110122, China; 3. Neusoft Research of Intelligent Healthcare Technology Co., Ltd., Shenyang 110167, China.
  • Revised:2021-09-14 Accepted:2021-09-14 Published:2022-08-11
  • Contact: XU Li-sheng
  • About author:-
  • Supported by:
    -

摘要: 针对模型估计左心室压力波形的临床个性化需求和大量参数优化计算复杂情况,提出基于灵敏度分析的模型参数子集选择策略.以左心室压力波形特征作为体循环模型的输出,通过自适应稀疏多项式混沌展开算法构建原始模型的元模型,改进索贝尔灵敏度指标计算,选出模型中对左心室压力波形特征有重要影响的参数作为参数子集.本文提出的选择策略可以为左心室压力波形估计中的模型参数临床个性化提供参考依据;参数子集中模型参数数量的减少,可以降低优化空间和参数求解的复杂度.实验结果表明,采用参数子集的左心室压力波形及特征估计与模型的全体参数估计具有很高的一致性.

关键词: 灵敏度分析;参数子集选择;左心室压力波形估计;自适应稀疏多项式混沌展开算法;索贝尔法

Abstract: Since the left ventricle pressure waveform(LVPW)estimation is based on the model with numerous patient specific parameters, there is a great need to reduce the computation cost. A parameter subset selection strategy based on sensitivity analysis is proposed to solve these problems. LVPW features are chosen as outputs of a systemic circulation model. The meta model is created by adaptive sparse polynomial chaos expansion algorithm, and then Sobol sensitivity index is computed. Finally, the parameters which have large impact on LVPW features are selected as parameter subset. The parameter subset selection proposed in this paper can provide help for applying model to patient specific situations in clinical applications. Meantime, the results indicate that the reducing size of parameter subset can decrease the complex computation of parameter optimization significantly. Furthermore, LVPW estimation based on the proposed method has high correlation with that based on full model parameters.

Key words: sensitivity analysis; parameter subset selection; left ventricle pressure waveform(LVPW)estimation; adaptive sparse polynomial chaos expansion algorithm; Sobol method

中图分类号: