东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (7): 913-921.DOI: 10.12068/j.issn.1005-3026.2023.07.001

• 信息与控制 •    下一篇

一种应用于脑电情感识别的迁移学习框架

赵海, 王相, 施瀚, 陈佳伟   

  1. (东北大学 计算机科学与工程学院, 辽宁 沈阳110169)
  • 发布日期:2023-07-13
  • 通讯作者: 赵海
  • 作者简介:赵海(1959-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2020GFZD014).

A Transfer Learning Framework for EEG Emotion Recognition

ZHAO Hai, WANG Xiang, SHI Han, CHEN Jia-wei   

  1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China.
  • Published:2023-07-13
  • Contact: WANG Xiang
  • About author:-
  • Supported by:
    -

摘要: 脑电信号作为最能表征人体情绪的信号,正在成为情感识别的主流信号源.利用迁移学习可以克服生理信号源域、目标域间存在分布差异的问题.传统迁移学习由于缺少对样本、特征的选择过程,会对迁移效果产生负影响,致使识别率较低.为提升迁移效果,在样本、特征两个方面对迁移数据进行优化.介绍了一种基于Like值的实例筛选方法,以及基于粒子群优化的自动特征选择方法,并使用联合分布适配(joint distribution adaptation,JDA),提出了一种应用于情感识别的迁移学习框架.在SEED数据集上构建了两个迁移任务并进行验证,结果表明,该框架可以有效提升迁移效果,提高跨域情感识别准确率.

关键词: 情感识别;迁移学习;样本筛选;特征选择;脑电信号

Abstract: As the most representative signal of human emotion, EEG signal is becoming the mainstream signal source of emotion recognition. Transfer learning can overcome the problem of distribution difference between physiological signal source domain and target domain. The traditional transfer learning will have a negative impact on the transfer effect due to the lack of the selection process of samples and features, resulting in a low recognition rate. In order to improve the migration effect, this paper optimizes the migrated data in two aspects: samples and characteristics. A case selection method based on like value and an automatic feature selection method based on particle swarm optimization are introduced. Using JDA, a transfer learning framework for emotion recognition is proposed. Finally, two transfer learning tasks are constructed on the SEED dataset for verification. The results show that the framework can effectively improve the transfer effect and improve the accuracy of cross domain emotion recognition.

Key words: emotion recognition; transfer learning; sample selection; feature selection; EEG signal

中图分类号: