东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (3): 401-406.DOI: 10.12068/j.issn.1005-3026.2024.03.012
收稿日期:
2022-10-31
出版日期:
2024-03-15
发布日期:
2024-05-17
通讯作者:
胡恩柱
作者简介:
冯宇庭(1999-),女,山西忻州人,东北大学硕士研究生基金资助:
Yu-ting FENG, Li CHENG, Ke-mei WANG, En-zhu HU()
Received:
2022-10-31
Online:
2024-03-15
Published:
2024-05-17
Contact:
En-zhu HU
About author:
HU En-zhu, E-mail: huez@smm.neu.edu.cn摘要:
以丁铵黑药(ADD)为研究对象,基于饱和土柱迁移实验和数学模型,探究石英砂表面金属负载种类和负载量对ADD迁移规律的影响.结果表明,在石英砂表面负载针铁矿(w(Fe)为0.028%和0.042%),不会影响ADD的迁移.在介质上继续负载氧化铜,ADD与矿物表面的Cu2+反应生成Cu-ADD络合物,抑制了ADD的迁移.并且随着w(Cu)从0.001 8%增加到0.005 5%,ADD的回收率从44.32%下降至8.85%.在w(Cu)为0.001 8%时,随着ADD质量浓度从20 mg/L增加到60 mg/L,其回收率提高至63.64%.
中图分类号:
冯宇庭, 成丽, 王可媚, 胡恩柱. 金属矿物对丁铵黑药在饱和多孔介质中迁移特性的影响[J]. 东北大学学报(自然科学版), 2024, 45(3): 401-406.
Yu-ting FENG, Li CHENG, Ke-mei WANG, En-zhu HU. Effect of Metallic Minerals on Transport Characteristics of Ammonium Dibutyl Dithiophosphate in Saturated Porous Media[J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 401-406.
名称 | 介质种类 | w(Fe)/% | w(Cu)/% | ADD质量浓度 |
---|---|---|---|---|
mg·L–1 | ||||
CK | 石英砂 | — | — | 60 |
F1H | 覆铁砂Ⅰ | 0.042 | <0.000 1 | 60 |
F1L | 覆铁砂Ⅰ | 0.042 | <0.000 1 | 20 |
F2L | 覆铁砂Ⅱ | 0.028 | <0.000 1 | 20 |
C1H | 覆铁铜砂Ⅰ | 0.039 | 0.001 8 | 60 |
C1L | 覆铁铜砂Ⅰ | 0.039 | 0.001 8 | 20 |
C2L | 覆铁铜砂Ⅱ | 0.040 | 0.005 5 | 20 |
表1 丁铵黑药土柱迁移实验
Table 1 Soil column transport experiment of ammonium dibutyl dithiophosphate
名称 | 介质种类 | w(Fe)/% | w(Cu)/% | ADD质量浓度 |
---|---|---|---|---|
mg·L–1 | ||||
CK | 石英砂 | — | — | 60 |
F1H | 覆铁砂Ⅰ | 0.042 | <0.000 1 | 60 |
F1L | 覆铁砂Ⅰ | 0.042 | <0.000 1 | 20 |
F2L | 覆铁砂Ⅱ | 0.028 | <0.000 1 | 20 |
C1H | 覆铁铜砂Ⅰ | 0.039 | 0.001 8 | 60 |
C1L | 覆铁铜砂Ⅰ | 0.039 | 0.001 8 | 20 |
C2L | 覆铁铜砂Ⅱ | 0.040 | 0.005 5 | 20 |
参数 | CK | F1H | C1H | F2L | C1L | F1L | C2L |
---|---|---|---|---|---|---|---|
ρ/ρ0峰值 | 0.99 | 0.96 | 0.76 | 0.99 | 0.64 | 1.03 | 0.20 |
回收率/% | 99.65 | 95.61 | 63.64 | 97.82 | 44.32 | 104.07 | 8.85 |
表2 丁铵黑药迁移穿透曲线的峰值和回收率
Table 2 The peak value and recovery rate for breakthrough curves of ammonium dibutyl dithiophosphate transport
参数 | CK | F1H | C1H | F2L | C1L | F1L | C2L |
---|---|---|---|---|---|---|---|
ρ/ρ0峰值 | 0.99 | 0.96 | 0.76 | 0.99 | 0.64 | 1.03 | 0.20 |
回收率/% | 99.65 | 95.61 | 63.64 | 97.82 | 44.32 | 104.07 | 8.85 |
模型 | 参数 | CK | F1H | C1H | F2L | C1L | F1L | C2L |
---|---|---|---|---|---|---|---|---|
ES | Kd/(cm3·g-1) | 0.062 | 0.079 | — | 0.088 | — | 0.066 | — |
R2 | 0.978 | 0.964 | — | 0.960 | — | 0.968 | — | |
RMSE | 0.029 | 0.041 | — | 0.039 | — | 0.032 | — | |
AIC | -240.80 | -222.20 | — | -226.10 | — | -239.90 | — | |
TS | f | 0.420 | 0.013 | 0.004 | 0.018 | 0.003 | 0.025 | 0.013 |
Kd/(cm3·g-1) | 0.140 | 6.024 | 77.165 | 4.787 | 161.120 | 2.642 | 19.011 | |
ω | 1.86×10-3 | 5.14×10-5 | 2.07×10-5 | 4.60×10-5 | 1.71×10-5 | 3.44×10-5 | 5.26×10-4 | |
R2 | 0.977 | 0.964 | 0.812 | 0.960 | 0.710 | 0.968 | 0.290 | |
RMSE | 0.029 | 0.033 | 0.075 | 0.035 | 0.093 | 0.031 | 0.145 | |
AIC | -238.10 | -234.50 | -176.70 | -230.10 | -160.90 | -237.80 | -130.40 | |
TK | ka2/min-1 | — | — | 0.020 | — | 0.034 | — | 0.129 |
— | — | 0.321 | — | 0.528 | — | 0.279 | ||
ka1/min-1 | — | — | 0.167 | — | 0.192 | — | 0.657 | |
kd1/min-1 | — | — | 0.009 | — | 0.012 | — | 0.014 | |
R2 | — | — | 0.966 | — | 0.901 | — | 0.547 | |
RMSE | — | — | 0.032 | — | 0.055 | — | 0.125 | |
AIC | — | — | -232.90 | — | -196.30 | — | -138.70 |
表3 丁铵黑药迁移穿透曲线模型拟合结果
Table 3 The model fitting results for breakthrough curves of ammonium dibutyl dithiophosphate transport
模型 | 参数 | CK | F1H | C1H | F2L | C1L | F1L | C2L |
---|---|---|---|---|---|---|---|---|
ES | Kd/(cm3·g-1) | 0.062 | 0.079 | — | 0.088 | — | 0.066 | — |
R2 | 0.978 | 0.964 | — | 0.960 | — | 0.968 | — | |
RMSE | 0.029 | 0.041 | — | 0.039 | — | 0.032 | — | |
AIC | -240.80 | -222.20 | — | -226.10 | — | -239.90 | — | |
TS | f | 0.420 | 0.013 | 0.004 | 0.018 | 0.003 | 0.025 | 0.013 |
Kd/(cm3·g-1) | 0.140 | 6.024 | 77.165 | 4.787 | 161.120 | 2.642 | 19.011 | |
ω | 1.86×10-3 | 5.14×10-5 | 2.07×10-5 | 4.60×10-5 | 1.71×10-5 | 3.44×10-5 | 5.26×10-4 | |
R2 | 0.977 | 0.964 | 0.812 | 0.960 | 0.710 | 0.968 | 0.290 | |
RMSE | 0.029 | 0.033 | 0.075 | 0.035 | 0.093 | 0.031 | 0.145 | |
AIC | -238.10 | -234.50 | -176.70 | -230.10 | -160.90 | -237.80 | -130.40 | |
TK | ka2/min-1 | — | — | 0.020 | — | 0.034 | — | 0.129 |
— | — | 0.321 | — | 0.528 | — | 0.279 | ||
ka1/min-1 | — | — | 0.167 | — | 0.192 | — | 0.657 | |
kd1/min-1 | — | — | 0.009 | — | 0.012 | — | 0.014 | |
R2 | — | — | 0.966 | — | 0.901 | — | 0.547 | |
RMSE | — | — | 0.032 | — | 0.055 | — | 0.125 | |
AIC | — | — | -232.90 | — | -196.30 | — | -138.70 |
图2 不同初始浓度的丁铵黑药在F1H,F1L,C1H,C1L中的穿透曲线
Fig.2 Breakthrough curves of ammonium dibutyl dithiophosphate with various initial concentrations in F1H,F1L and C1H,C1L
图3 丁铵黑药(20 mg/L)在不同金属负载量的石英砂中的穿透曲线
Fig.3 Breakthrough curves of ammonium dibutyl dithiophosphate (20 mg/L) in quartz sand with different metal loadings
1 | Lotter N O, Bradshaw D J.The formulation and use of mixed collectors in sulphide flotation[J].Minerals Engineering,2010,23(11):945-951. |
2 | Zhang T, Qin W Q.Floc flotation of jamesonite fines in aqueous suspensions induced by ammonium dibutyl dithiophosphate[J].Journal of Central South University,2015,22(4):1232-1240. |
3 | 陈晓蕾.有机改性膨润土对选矿废水中丁铵黑药的吸附性能研究[D].济南:山东大学,2018. |
Chen Xiao‐lei.Investigation on he adsorption performance of the organobentonite to ammonium dibutyl dithiophosphate in the beneficiation wastewater[D].Jinan:Shandong University,2018. | |
4 | Boening D W, Chew C M.A critical review:general toxicity and environmental fate of three aqueous cyanide ions and associated ligands[J].Water,Air,and Soil Pollution,1999,109(1):67-79. |
5 | Griffiths S R, Smith G B, Donato D B,et al.Factors influencing the risk of wildlife cyanide poisoning on a tailings storage facility in the Eastern Goldfields of Western Australia[J].Ecotoxicology and Environmental Safety,2009,72(5):1579-1586. |
6 | Obiri S, Dodoo D K, Okai‐Sam F,et al.Non‐cancer health risk assessment from exposure to cyanide by resident adults from the mining operations of Bogoso Gold Limited in Ghana[J].Environmental Monitoring and Assessment,2006,118(1):51-63. |
7 | 孙乾予,印万忠,朱张磊,等.丁基钠黄药浮选斑铜矿的吸附热力学和动力学研究[J].东北大学学报(自然科学版),2019,40(4):574-579. |
Sun Qian‐yu, Yin Wan‐zhong, Zhu Zhang‐lei,et al.Adsorption thermodynamics and kinetics of bornite using sodium butyl xanthate as collector in flotation[J].Journal of Northeastern University ( Natural Science),2019,40 (4):574-579. | |
8 | Schaider L A, Senn D B, Brabander D J,et al.Characterization of zinc,lead,and cadmium in mine waste:implications for transport,exposure,and bioavailability[J].Environmental Science & Technology,2007,41(11):4164-4171. |
9 | Conesa H M, Faz Á, Arnaldos R.Initial studies for the phytostabilization of a mine tailing from the Cartagena‐La Union Mining District (SE Spain)[J].Chemosphere,2007,66(1):38-44. |
10 | 成丽,梁海军,南相莉,等.丁基黄药在金属负载石英砂中的迁移特性[J].东北大学学报(自然科学版),2023,44(5):712-718. |
Cheng li, Liang Hai‐jun, Xiang‐li Nan,et al.Transport characteristics of butyl xanthate in metal‐coated quartz sand [J].Journal of Northeastern University (Natural Science),2023,44(5):712-718. | |
11 | 黄显东,莫测辉,李彦文,等.水生植物对金属矿山丁铵黑药污染的生长响应与植物修复[J].农业工程学报,2011,27(2):255-260. |
Huang Xian‐dong, Mo Ce‐hui, Li Yan‐wen,et al.Growth response and phytoremediation of several species of hydrophytes to ammonium butyl aerofloat in metal mines[J].Transactions of the CSAE,2011,27(2):255-260. | |
12 | Qi Z C, Du T T, Ma P K,et al.Transport of graphene oxide in saturated quartz sand containing iron oxides[J].Science of the Total Environment,2019,657:1450-1459. |
13 | 杨翾.铁铜氧化物复合改性石英砂滤料制备工艺与吸附特性研究[D].广州:广东工业大学,2016. |
Yang Xuan.Study on the preparation process and adsorption characteristic of Fe/Cu oxide composite modified quartz sand[D].Guangzhou:Guangdong University of Technology,2016. | |
14 | Hu E Z, Yuan H B, Du Y C,et al.LDPE and HDPE microplastics differently affect the transport of tetracycline in saturated porous media[J].Materials,2021,14(7):14071757. |
15 | Hu E Z, Shang S Y, Fu Z T,et al.Cotransport of naphthalene with polystyrene nanoplastics(PSNP) in saturated porous media:effects of PSNP /naphthalene ratio and ionic strength[J].Chemosphere,2020,245:125602. |
16 | 王日梁.载铜苦草生物炭的制备及其对苯胺黑药、丁铵黑药吸附性能的研究[D].南宁:广西大学,2021. |
Wang Ri‑liang.Preparation of copper‐loaded biochar from Vallisneria natans and its adsorption capacity for aniline aerofloat and ammonium dibutyl dithiophosphate[D].Nanning:Guangxi University,2021. | |
17 | Gancheva V, Yordanov N D, Koev L.EPR and electronic spectral properties of aryl‐substituted bis(dithiophosphato) copper(Ⅱ) complexes[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,69(5):1317-1321. |
18 | Buckley A N, Goh S W, Skinner W M,et al.Interaction of cuprite with dialkyl dithiophosphates[J].International Journal of Mineral Processing,2009,93(2):155-164. |
19 | Güler T, Hiçyilmaz C, Gökağaç G,et al.Adsorption of dithiophosphate and dithiophosphinate on chalcopyrite[J].Minerals Engineering,2006,19(1):62-71. |
20 | Yordanov N D.A spectroscopic study of the self‐redox reaction of sulfur‐containing copper (Ⅱ) complexes[J].Transition Metal Chemistry,1997,22(2):200-207. |
21 | Wang X, Liu W, Jiao F,et al.New insights into the mechanism of selective flotation of copper and copper‐tin alloy[J].Separation and Purification Technology,2020,253:117497. |
22 | Fan H L, Qin J Q, Liu J,et al.nvestigation into the flotation of malachite,calcite and quartz with three phosphate surfactants[J].Journal of Materials Research and Technology,2019,8(6):5140-5148. |
23 | 松全元,陈秀枝,张晓峰.用FTIR研究丁铵黑药浮选黄铁矿的作用机理[J].有色金属,1997,49(1):33-38. |
Song Quan‑yuan, Chen Xiu‑zhi, Zhang Xiao‑feng.FTIR study of ammonium dibutyl dithiophosphate on flotation of pyrite[J].Nonferrous Metals,1997,49(1):33-38. | |
24 | Zou S, Lin Q Y, Wang S,et al.A novel surfactant O,O'-bis (2‑butoxyethyl) ammonium dithiophosphate:synthesis,selective flotation and adsorption mechanism towards galena[J].Minerals Engineering,2022,179:107466. |
[1] | 张磊, 蒋开喜, 谢锋, 路殿坤. 氧化铜精矿熔炼过程中铜、钴、铁的还原行为[J]. 东北大学学报(自然科学版), 2024, 45(3): 337-345. |
[2] | 赵海, 王相, 施瀚, 陈佳伟. 一种应用于脑电情感识别的迁移学习框架[J]. 东北大学学报(自然科学版), 2023, 44(7): 913-921. |
[3] | 成丽, 梁海军, 南相莉, 胡恩柱. 丁基黄药在金属负载石英砂中的迁移特性[J]. 东北大学学报(自然科学版), 2023, 44(5): 712-718. |
[4] | 李海峰, 杨巧婷, 邵磊, 邹宗树. 高炉内料层结构动态追踪的技术开发[J]. 东北大学学报(自然科学版), 2023, 44(5): 617-625. |
[5] | 赵煜辉, 齐天舒, 芦鹏程. 近红外光谱变分推断标定自适应方法研究[J]. 东北大学学报(自然科学版), 2023, 44(10): 1377-1383. |
[6] | 赵海, 陈佳伟, 施瀚, 王相. 一种应用于人体活动识别的迁移学习算法[J]. 东北大学学报(自然科学版), 2022, 43(6): 776-782. |
[7] | 黄雪驰, 李宝宽, 段怡如, 刘中秋. 电渣重熔过程钢中氧含量预测及控制[J]. 东北大学学报(自然科学版), 2022, 43(4): 524-534. |
[8] | 侯东晓, 穆金涛, 方成, 时培明. 基于GADF与引入迁移学习的ResNet34对变速轴承的故障诊断[J]. 东北大学学报(自然科学版), 2022, 43(3): 383-389. |
[9] | 叶翠丽, 王娜, 庞硕, 闫航. 基于改进遗传算法的秸秆还田机刀片功耗优化[J]. 东北大学学报(自然科学版), 2021, 42(9): 1290-1298. |
[10] | 肖发新, 彭宇, 孙树臣, 涂赣峰. (NH4)2SO4-NH3-H2O体系浸出高碱性脉石低品位氧化铜矿[J]. 东北大学学报(自然科学版), 2021, 42(6): 795-801. |
[11] | 王新刚, 韩凯忠, 王超, 李林. 基于迁移学习的轴承剩余使用寿命预测方法[J]. 东北大学学报(自然科学版), 2021, 42(5): 665-672. |
[12] | 王姝, 关展旭, 王晶, 孙晓辉. 基于迁移学习的贝叶斯网络参数学习方法[J]. 东北大学学报(自然科学版), 2021, 42(4): 509-515. |
[13] | 赵煜辉, 芦鹏程, 刘晓东, 齐天舒. 基于校正分布差异的标定迁移方法研究[J]. 东北大学学报(自然科学版), 2021, 42(3): 310-317. |
[14] | 常玉清, 赵炜炜, 刘乐源, 康孝云. 基于实例迁移的磨煤机过程监测建模[J]. 东北大学学报(自然科学版), 2021, 42(10): 1369-1375. |
[15] | 张泽, 王述红, 杨天娇, 张雨浓. 寒区隧道围岩水热耦合数值分析[J]. 东北大学学报:自然科学版, 2020, 41(5): 635-641. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 447
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 679
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||