东北大学学报(自然科学版) ›› 2013, Vol. 34 ›› Issue (4): 500-504.DOI: -

• 信息与控制 • 上一篇    下一篇

蚁群算法在服务选取问题中的分析比较

张长胜,任明康,尹浩,张斌   

  1. (东北大学信息科学与工程学院,辽宁沈阳110819)
  • 收稿日期:2012-10-15 修回日期:2012-10-15 出版日期:2013-04-15 发布日期:2013-06-19
  • 通讯作者: 张长胜
  • 作者简介:张长胜(1980-),男,吉林长春人,东北大学副教授;张斌(1964-),男,辽宁本溪人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61100090,61073062,61100027);中央高校基本科研业务费专项资金资助项目(N11024006);教育部高等学校博士学科点新教师基金资助项目(20100042120040).

Analysis and Comparison of Ant Colony Algorithms for Service Selection

ZHANG Changsheng, REN Mingkang, YIN Hao, ZHANG Bin   

  1. School of Information Science & Engineering, Northeastern University, Shenyang 110819,China.
  • Received:2012-10-15 Revised:2012-10-15 Online:2013-04-15 Published:2013-06-19
  • Contact: ZHANG Bin
  • About author:-
  • Supported by:
    -

摘要: 在对蚁群算法进行总结分析的基础上,提出了求解该问题的蚁群优化模型,定义了针对服务选取问题的信息素及启发式信息,并采用6种蚁群算法对该问题进行了求解.最后通过试验对这些算法在服务选取问题中的适用性进行了分析,并与最近提出的服务选取算法进行了比较.结果表明,设计的不同蚁群算法在求解该问题时性能差异较大,其中ACS算法不但收敛速度快,其求解质量也好于被比较的其他算法.

关键词: 蚁群算法, 服务选取, 服务质量, 群智能, 信息素

Abstract: An ant colony optimization model for service selection was proposed on the basis of the summation analysis of the existing ant colony algorithms. The phoneme and heuristic information related with service selection were defined, and the six ant colony algorithms were applied to solve it. These algorithms were experimentally analyzed for different aspects and compared with the recently proposed service selection algorithm. The results showed that the performances of these algorithms were different and the ACS algorithm had better performance than the other compared algorithms.

Key words: ant colony algorithm, service selection, QoS, swarm intelligence, information phoneme

中图分类号: