东北大学学报(自然科学版) ›› 2011, Vol. 32 ›› Issue (11): 1521-1524.DOI: -

• 论著 •    下一篇

时滞Lipschitz非线性系统观测器设计

张悦;杨洪金;肇和平;刘锐;   

  1. 东北大学理学院;中国人民解放军第65183部队;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(N090305005);;

Observer design for Lipschitz nonlinear systems with time-delay

Zhang, Yue (1); Yang, Hong-Jin (2); Zhao, He-Ping (2); Liu, Rui (2)   

  1. (1) School of Sciences, Northeastern University, Shenyang 110819, China; (2) No.65183 People's Liberation Army Troops, Liaoyang 111200, China
  • Received:2013-06-19 Revised:2013-06-19 Published:2013-04-04
  • Contact: Zhang, Y.
  • About author:-
  • Supported by:
    -

摘要: 针对满足Lipschitz条件的非线性时滞系统的观测器设计问题,给出了一种新型的全维、降维观测器,并用线性矩阵不等式的形式给出了全维、降维观测器存在的充分条件,通过构造Lyapunov函数进行了证明.结果表明:设计的全维、降维观测器通过解线性矩阵不等式可以方便地获得观测器的增益矩阵,简化了增益矩阵的求解过程,消除了增益矩阵选取的盲目性.通过对同一模型进行仿真分析,两种观测器的状态估计误差均能迅速收敛到零,表明所提方法的有效性.

关键词: 非线性时滞, 全维观测器, 降维观测器, 线性矩阵不等式, Lyapunov函数

Abstract: To the problem of state observer design which is considered for a class of Lipschitz nonlinear systems with time-delay, new type full-order and reduced-order observers were given. Sufficient conditions for observers were presented by line matrix inequality (LMI) and proven through constructing Lyapunov function. The results indicated that the gain matrixes of full-order and reduced-order observers can be obtained easily by soluting line matrix inequality, so the solving process of the gain matrixes is simplified and the approach avoids the blindness of selecting the gain matrix. The simulation results for the model showed that the two kinds of state estimate errors converge to zero quickly, which indicates that the approach is effective.

中图分类号: