High Precision Recursive Algorithm for Computing Fractional-Order Derivative and Integral
BAI Lu1,2, XUE Ding-yu1
1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. School of Information Engineering, Shenyang University, Shenyang 110044, China.
BAI Lu, XUE Ding-yu. High Precision Recursive Algorithm for Computing Fractional-Order Derivative and Integral[J]. Journal of Northeastern University Natural Science, 2018, 39(4): 604-608.
[1]Wei Y H,Tse P W,Du B,et al.An innovative fixed-pole numerical approximation for fractional order systems[J].ISA Transactions,2016,62:94-102. [2]Xue D Y,Bai L.Numerical algorithms for Caputo fractional-order differential equations[J].International Journal of Control,2017,90(6):1201-1211. [3]Xue D Y,Bai L.Benchmark problems for Caputo fractional-order ordinary differential equations[J].Fractional Calculus and Applied Analysis,2017,20(5):1305-1312. [4]Li M M,Wang J R.Finite time stability of fractional delay differential equations[J].Applied Mathematics Letters,2017,64:170-176. [5]Li C P,Zeng F H.Numerical methods for fractional calculus[M].Boca Raton:Chapman & Hall Crc,2015:50-100. [6]Lubich C.Discretized fractional calculus[J].SIAM Journal on Mathematical Analysis,1986,17(3):704-719. [7]Podlubny I.Fractional differential equations[M].New York:Academic Press,1999:41-91. [8]Cao J X,Li C P,Chen Y Q.High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (Ⅱ)[J].Fractional Calculus and Applied Analysis,2015,18(3):735-761.