LIU Yu, WEI Xi-lai, WANG Shuai, DAI Li. Machine Vision Automatic Inspection Technology of Optical Fiber Winding Based on Deep Learning[J]. Journal of Northeastern University(Natural Science), 2021, 42(1): 68-74.
[1]郭晨霞,杨瑞峰.数字视觉精密测量光纤环绕制状态参数[J].中北大学学报(自然科学版),2014,35(3):337-341.(Guo Chen-xia,Yang Rui-feng.Parameter measurement of fiber coil winding based on digital vision[J].Journal of North University of China(Natural Science Edition),2014,35(3):337-341.) [2]郭晨霞,杨瑞峰,张鹏.光纤环绕制监测图像清晰度评价方法[J].兰州理工大学学报,2016,42(5):102-105.(Guo Chen-xia,Yang Rui-feng,Zhang Peng.Evaluation method of image clarity monitoring with fiber coil winding[J].Journal of Lanzhou University of Technology,2016,42(5):102-105.) [3]郭晨霞,杨瑞峰,赵洛彬.基于区域的光纤环绕制缺陷实时检测算法[J].太原理工大学学报,2016,47(2):190-194.(Guo Chen-xia,Yang Rui-feng,Zhao Luo-bin.The defect detection algorithm of fiber coil winding based on winding region[J].Journal of Taiyuan University of Technology,2016,47(2):190-194.) [4]张万成,叶泽群.一种用于光纤精密绕线的视觉识别技术[J].电子工艺技术,2015,36(3):172-174.(Zhang Wan-cheng,Ye Ze-qun.A design of visual identification technology for accurate winding of optical fiber[J].Electronics Process Technology,2015,36(3):172-174.) [5]杨瑞峰,丁清,郭晨霞,等.光纤环绕制缺陷动态检测方法研究[J].实验室研究与探索,2017,36(10):36-40.(Yang Rui-feng,Ding Qing,Guo Chen-xia,et al.Research on dynamic detection method of winding defects of optical fiber coils[J].Research and Exploration in Laboratory,2017,36(10):36-40.) [6]Nyalala I,Okinda C,Nyalala L,et al.Tomato volume and mass estimation using computer vision and machine learning algorithms:cherry tomato model[J].Journal of Food Engineering,2019,263:288-298. [7]Wang J J,Fu P,Gao R X.Machine vision intelligence for product defect inspection based on deep learning and Hough transform[J].Journal of Manufacturing Systems,2019,51:52-60. [8]He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,2016:770-778. [9]Howard A G,Zhu M,Chen B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2019-10-08].https://arxiv.org/abs/1704.04861 [10]Sandler M,Howard A,Zhu M,et al.MobileNetv2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:4510-4520. [11]Howard A,Sandler M,Chu G,et al.Searching for MobileNetv3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,2019:1314-1324. [12]Pulli K,Baksheev A,Kornyakov K,et al.Real-time computer vision with OpenCV[J].Communications of the ACM,2012,55(6):61-69. [13]Tan C,Sun F,Kong T,et al.A survey on deep transfer learning[C]//27th International Conference on Artificial Neural Networks.Rhodes,2018:270-279. [14]Han D,Liu Q,Fan W.A new image classification method using CNN transfer learning and web data augmentation[J].Expert Systems With Applications,2018,95:43-56. [15]Kingma D P,Ba J.Adam:a method for stochastic optimization[EB/OL].(2014-12-22)[2019-10-08].https://arxiv.org/abs/1412.6980.