MA Hai-tao, LU Jia-rui, YU Wen-xin, YU Chang-yong. Relationship Between the Number of Linear Regions and Expressive Power of Piecewise Linear Neural Networks[J]. Journal of Northeastern University(Natural Science), 2021, 42(2): 201-207.
[1]Wang S H,Phillips P, Sui Y X,et al.Classification of Alzheimers disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling[J/OL].Journal of Medical Systems,2018 [2019-12-05].https://link.springer.com/article/10.1007/s10916-018-0932-7.DOI:10.1007/s10916-018-0932-7. [2]Croce F,Hein M.A randomized gradient-free attack on ReLU networks[C/OL] // Proceedings of 40th German Conference on Pattern Recognition.Stuttgart,2018(2018-11-28)[2019-12-06].https://arxiv.org/pdf/1811.11493.pdf.DOI:10.1007/978-3-030-12939-2_16. [3]Pascanu R,Montúfar G,Bengio Y.On the number of response regions of deep feed forward networks with piece-wise linear activations[J/OL].(2014-02-14) [2020-01-04].https://arxiv.org/abs/1312.6098v4.DOI:10.1002/art.23474. [4]Montúfar G,Pascanu R,Cho K,et al.On the number of linear regions of deep neural networks[C] // Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge,MA:MIT Press,2014:2924-2932. [5]Eldan R,Shamir O.The power of depth for feed forward neural networks[C/OL].(2015-12-12) [2019-12-05].https://arxiv.org/abs/1512.03965v1. [6]Serra T,Tjandraatmadja C,Ramalingam S.Bounding and counting linear regions of deep neural networks[C/OL].(2017-11-06)[2019-12-08].https://www.researchgate.net/publication/320920537_Bounding_and_Counting_Linear_Regions_of_Deep_Neural_Networks. [7]Raghu M,Poole B ,Kleinberg J ,et al.On the expressive power of deep neural networks[C] // Proceedings of the 34th International Conference on Machine Learning.Sydney,2017:2847-2854. [8]Zhang L W,Naitzat G,Lim L H.Tropical geometry of deep neural networks[C] // Proceedings of the 35th International Conference on Machine Learning.Stockholm,2018:5824-5832. [9]Ribeiro M T,Singh S,Guestrin C.“Why should I trust you?”:explaining the predictions of any classifier[C] // Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Demonstrations.San Diego,CA,2016:97-101. [10]Fong R,Vedaldi A.Interpretable explanations of black boxes by meaningful perturbation[C] // IEEE International Conference on Computer Vision.Venice,2017:3429-3437. [11]Chu L Y,Hu X,Hu J H,et al.Exact and consistent interpretation for piecewise linear neural networks:a closed form solution[C] // Processes of the 24th ACM SIGKDD International Reference on Knowledge Discovery & Data Mining.London,2018:1244-1253.