ZHANG Na, WANG Lu, CHENG Jun-na, TIAN Ji-rong. Adaptive Range-Gated 3D Imaging Based on Distributed Compressed Sensing[J]. Journal of Northeastern University(Natural Science), 2021, 42(4): 516-523.
[1]Wang X,Liu X,Ren P,et al.Underwater three-dimensional range-gated laser imaging based on triangular-range-intensity profile spatial-correlation method[C]//Optoelectronic Imaging & Multimedia Technology IV.Beijing,2016:1-6. [2]李海兰,王霞,金伟其,等.基于多帧水下距离选通图像的三维重构方法[J].光学学报,2010,30(12):3464-3470.(Li Hai-lan,Wang Xia,Jin Wei-qi,et al.3-dimersional reconstruction based on underwater range gated images[J].Acta Optica Sinica, 2010,30(12):3464-3470.) [3]An Y,Zhang Y,Guo H,et al.Compressive sensing based three-dimensional laser imaging with dual illumination[J].IEEE Access,2019,7:25708-25717. [4]Sejdi E,Orovi I,Stankovi S.Compressive sensing meets time-frequency:an overview of recent advances in time-frequency processing of sparse signals[J].Digital Signal Processing,2017,77:22-35. [5]Rani M,Dhok S B,Deshmukh R B.A systematic review of compressive sensing:concepts,implementations and applications[J].IEEE Access,2018,6:4875-4894. [6]De Kort D W,Hertel S A,Appel M,et al.Under-sampling and compressed sensing of 3D spatially-resolved displacement propagators in porous media using APGSTE-RARE MRI[J].Magnetic Resonance Imaging,2019,56:24-31. [7]孙梦阳.基于距离编码的压缩传感激光三维成像的研究[D].哈尔滨:哈尔滨工业大学,2017.(Sun Meng-yang.Research on laser 3D imaging of compressed sensing based on range encoding[D].Harbin:Harbin Institute of Technology,2017.) [8]张硕.基于压缩感知的三维成像方法研究[D].杭州:浙江大学,2013.(Zhang Shuo.Research on 3D imaging method based on compressive sensing[D].Hangzhou:Zhejiang University,2013.) [9]Sun M J,Edgar M P,Gibson G M,et al.Single-pixel three-dimensional imaging with time-based depth resolution[J].Nature Communications, 2016,7:1-7. [10]Edger M,Sun M,Spalding G,et al.First-photon 3D imaging with a single pixel camera[C]// Frontiers in Optics 2016.Rochester:Optical Society of America.2016.https://doi.org/10.1364/FIO.2016.FF1D.2. [11]Sun M,Zhang J.Single-pixel imaging and its application in three-dimensional reconstruction:a brief review[J].Sensors,2019,19(3):732.https://doi.org/10.3390/s19030732. [12]Chen X,Zhang Y,Qi R.Block sparse signals recovery algorithm for distributed compressed sensing reconstruction[J].Journal of Information Processing Systems,2019,15(2):410-421. [13]Baron D,Duarte M F,Wakin M B,et al.Distributed compressive sensing [EB/OL].(2009-01-22)[2020-06-18].https://arxiv.org/abs/0901.3403. [14]王伟.基于距离选通门控切片激光成像精度的实验研究[D].哈尔滨:哈尔滨工业大学,2015.(Wang Wei.Experimental research of range accuracy on range-gated time slice laser imaging[D].Harbin:Harbin Institute of Technology,2015.) [15]Donoho D.For most large underdetermined systems of linear equations,the minimal near-solution approximates the sparsest near-solution[J].Communications on Pure and Applied Mathematics,2006,59(6):797-829. [16]Wu J,Liu Z,Tan S,et al.Computational spectral imaging based on random modulation and compressed sensing reconstruction algorithm[C]// Digital Holography and Three-Dimensional Imaging.Heidelberg:Optical Society of America,2016.https://doi.org/10.1364/3D.2016.JT3A.37. [17]Li M,Yan L,Yang R,et al.Fast single-pixel imaging based on optimized reordering Hadamard basis[J].Acta Physica Sinica,2019,68(6):87-94. [18]Baraniuk R,Davenport M,Devore R,et al.A simple proof of the restricted isometry property for random matrices[J].Constructive Approximation,2008,28(3):253-263. [19]和志杰,杨春玲,汤瑞东.视频压缩感知中基于结构相似的帧间组稀疏表示重构算法研究[J].电子学报,2018,46(3):544-553.(He Zhi-jie,Yang Chun-ling,Tang Rui-dong.Research on structural similarity based on inter-group sparse representation in video compression sensing[J].Acta Electronica Sinica, 2018,46(3):544-553.) [20]Zhu J,Lim S H,Gastpar M.Communication versus computation:duality for multiple-access channels and source coding[J].IEEE Transactions on Information Theory,2018,65(1):292-301. [21]Elzouki D,Dumitrescu S,Chen J.Lattice-based robust distributed source coding[J]. IEEE Transactions on Information Theory, 2019,6(3):1764-1781. [22]Liu B,Gui G,Matsushita S,et al.Compressive sensing-based adaptive sparse multipath channel estimation[J].Journal of Advanced Computational Intelligence and Intelligent Informatics,2017,21(1):153-158. [23]Guggenmos M,Sterzer P,Cichy R M.Multivariate pattern analysis for MEG:a comparison of dissimilarity measures[J].Neuroimage,2018,173:434-447. [24]Chen C,Tramel E W,Fowler J E.Compressed-sensing recovery of images and video using multi-hypothesis predictions[C]//Signals,Systems and Computers(ASILO-MAR).Pacific Grove,2011:1193-1198.