JIANG Xia-xia, JIA Tao, WANG Hui, WANG Zhao-dong. Investigation on Microstructure Evolution of Aviation Bearing Steel During Carburizing Heat Treatment[J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1701-1708.
[1]柳东徽,赵亚娟.轴承钢裂纹缺陷分析与研究[J].轧钢, 2015,32(3):36-38.(Liu Dong-hui,Zhao Ya-juan.Analysis and research on crack defects of bearing steel[J]. Rolling,2015,32(3):36-38.) [2]Yada K,Watanabe O.Reactive flow simulation of vacuum carburizing by acetylene gas[J].Computers & Fluids,2013, 79:65-76. [3]Gawroński Z,Malasiński A,Sawicki J.Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels[J].International Journal of Automotive Technology,2010,11(1):127-131. [4]Wang F F,Li Q S,Zheng L J,et al.Microstructure and corrosion characterization of Cr film on carburized CSS-42L aerospace bearing steel by filtered cathodic vacuum arc deposition[J].Coatings,2018,8(9):313-324. [5]田勇,宋超伟,葛泉江,等.航空用高温轴承钢CSS-42L热处理技术及其展望[J].轧钢,2019,36(6):1-5.(Tian Yong,Song Chao-wei,Ge Quan-jiang,et al.Heat treatment technology and prospect of high temperature bearing steel CSS-42L for aviation [J].Rolling,2019,36(6):1-5.) [6]杨卯生.一种高强高韧耐蚀高温轴承齿轮钢及制备方法:CN02226254 A[P].2011-10-26.(Yang Mao-sheng.A kind of high strength,high toughness,corrosion resistance and high temperature bearing gear steel and its preparation method:CN02226254 A[P].2011-10-26.) [7]Yin L C,Ma X X,Tang G Z,et al.Characterization of carburized 14Cr14Co13Mo4 stainless steel by low pressure carburizing[J].Surface and Coatings Technology,2019,358:654-660. [8]王会,王昊杰,贾涛,等.航空轴承钢的真空低压渗碳工艺[J].金属热处理,2020,45(1):1-5.(Wang Hui,Wang Hao-jie,Jia Tao,et al.Vacuum low-pressure carburizing process of aviation bearing steel[J].Metal Heat Treatment,2020,45(1):1-5.) [9]Hetzner D W,Van Geertruyden W.Crystallography and metallography of carbides in high alloy steels[J].Materials Characterization,2008,59(7):825-841. [10]Inoue A,Arakawa S,Masumoto T.Effect of alloying elements on defect structure and hardness of M23C6 type carbides[J].Transactions of the Japan Institute of Metals,1979,20(10):585-592. [11]Basuki A,Aernoudt E.Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite[J].Journal of Materials Processing Technology,1999,89/90:37-43. [12]Lu Y,Yu H X,Sisson R D,et al.The effect of carbon content on the c/a ratio of as-quenched martensite in Fe-C alloys[J].Materials Science and Engineering A,2017,700:592-597. [13]Galindo-Nava E I,Rivera-Díaz-del-Castillo P E J.A model for the microstructure behavior and strength evolution in lath martensite[J].Acta Materialia,2015,98:81-93. [14]Hutchinson B,Hagstrm J,Karlsson O,et al.Microstructures and hardness of as-quenched martensite(0.1-0.5%C)[J].Acta Materialia,2011,59(14):5845-5858. [15]Kratzer D,Dobler F,Tobie T,et al.Effects of low-temperature treatments on surface hardness,retained austenite content,residual stress condition and the resulting tooth root bending strength of case-hardened 18CrNiMo7-6 gears[J].Proceedings of the Institution of Mechanical Engineers,2019,233(21/22):7350-7357. [16]周晓红,朱科.深冷处理对18Cr2Ni4WA渗碳淬火组织和性能的影响[J].热加工工艺,2020,49(12):147-149.(Zhou Xiao-hong,Zhu Ke.Effect of cryogenic treatment on microstructure and properties of 18Cr2Ni4WA carburizing and quenching[J].Hot Working Process,2020,49(12):147-149.) [17]Chakraborty G,Das C R,Albert S K,et al.Study on tempering behavior of AISI 410 stainless steel[J].Materials Characterization,2015,100:81-87.