1. School of Control Science and Engineering, Tiangong University, Tianjin 300387, China; 2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China.
[1]刘宁波,姜星宇,丁昊.雷达大擦地角海杂波特性与目标检测研究综述[J].电子与信息学报,2021,43(10):2771-2780.(Liu Ning-bo,Jiang Xing-yu,Ding Hao.Summary of research on characteristic of radar sea clutter and target detection at high grazing angles[J].Journal of Electronics & Information Technology,2021,43(10):2771-2780.) [2]丁鹭飞,耿富禄,陈建春,等.雷达原理[M].6版.北京:电子工业出版社,2020:7-10.(Ding Lu-fei,Geng Fu-lu,Chen Jian-chun,et al.Radar principle[M].6th ed.Beijing:Publishing House of Electronics Industry,2020:7-10.) [3]杨斌,黄默,王长元,等.X波段小擦地角海杂波WW分布建模[J].太赫兹科学与电子信息学报,2021,19(5):916-921.(Yang Bin,Huang Mo,Wang Chang-yuan,et al.WW distribution modeling of X-band sea clutter with low grazing angle[J].Journal of Terahertz Science and Electronic Information Technology,2021,19(5):916-921.) [4]张玉石,许心瑜,尹雅磊,等.L波段小擦地角海杂波幅度统计特性研究[J].电子与信息学报,2014,36(5):1044-1048.(Zhang Yu-shi,Xu Xin-yu,Yin Ya-lei,et al.Research on amplitude statistics of L-band low grazing angle sea clutter[J].Journal of Electronics & Information Technology,2014,36(5):1044-1048.) [5]Kafshgari S,Mohseni R.OFDM radar detection in Log normal clutter[C]// The 20th Telecommunications Forum(TELFOR).Belgrade:IEEE,2012:831-834. [6]Marier L J.Correlated K-distributed clutter generation for radar detection and track[J].IEEE Transactions on Aerospace and Electronic Systems,1995,31(2):568-580. [7]孙宇.基于球不变随机过程的相干相关K分布海杂波仿真[J].科学技术与工程,2009,9(17):5144-5147.(Sun Yu.Modeling and simulation of coherent correlated K-distribution sea clutter by SIRP[J].Science Technology and Engineering,2009,9(17):5144-5147.) [8]杨俊岭,吕韶昱,万建伟.一种新的相干K分布模型及其在海杂波仿真中的应用[J].系统仿真学报,2007,19(2):250-253,260.(Yang Jun-ling,Lyu Shao-yu,Wan Jian-wei.A new coherent K-distributed model and its application in sea clutter simulation[J].Journal of System Simulation,2007,19(2):250-253,260.) [9]Huang D,Zeng D Z.A new method for modeling and simulation of coherent correlated K-distributed clutter[C]// IET International Radar Conference.Guilin:IEEE,2009:1-9. [10]Conte E,Longo M,Lops M.Modelling and simulation of non-Rayleigh radar clutter[J].IEE Proceedings F Radar and Signal Processing,1991,138(2):121-130. [11]朱洁丽,汤俊.基于改进的ZMNL和SIRP的K分布杂波模拟方法[J].雷达学报,2014,3(5):533-540.(Zhu Jie-li,Tang Jun.K-distribution clutter simulation methods based on improved ZMNL and SIRP[J].Journal of Radars,2014,3(5):533-540.) [12]Rosenberg L,Watts S,Greco M S.Modeling the statistics of microwave radar sea clutter[J].IEEE Aerospace and Electronic Systems Magazine,2019,34(10):44-75. [13]Sabrina M,Stephane K,Vincent C.Synthetic sea clutter for long integration processing[C]// The 17th European Radar Conference.Netherlands:IEEE,2021:13-15. [14]许述文,王乐,曾威良,等.逆伽马纹理复合高斯杂波参数的贝叶斯估计方法[J].太赫兹科学与电子信息学报,2019,17(4):583-588.(Xu Shu-wen,Wang Le,Zeng Wei-liang,et al.Bayesian estimation method for compound Gaussian clutter model with inverse Gamma texture[J].Journal of Terahertz Science and Electronic Information Technology,2019,17(4):583-588.) [15]Zhou J,Chen D,Sun D W.K distribution sea clutter modeling and simulation based on ZMNL[C]// The 8th International Conference on Intelligent Computation Technology and Automation.Nanchang:IEEE,2015:506-509. [16]于涵,水鹏朗,施赛楠,等.广义Pareto分布海杂波模型参数的组合双分位点估计方法[J].电子与信息学报,2019,41(12):2836-2843.(Yu Han,Shui Peng-lang,Shi Sai-nan,et al.Combined bipercentile parameter estimation of generalized Pareto distributed sea clutter model[J]. Journal of Electronics & Information Technology,2019,41(12):2836-2843.) [17]陈岩,李艳艳,杨立波,等.地海杂波统计特性研究概述[J].空天防御,2020,3(4):44-51.(Chen Yan,Li Yan-yan ,Yang Li-bo,et al.An overview of statistical characteristics of ground-sea clutter[J].Air Space Defense,2020,3(4):44-51.) [18]Wallace N D.Computer generation of Gamma random variates with non-integral shape parameters[J].Association for Computing Machinery,1974,17(12):691-695. [19]Shaw W T,Luu T,Brickman N.Quantile mechanics II:changes of variables in Monte Carlo methods and GPU optimised normal quantiles[J].European Journal of Applied Mathematics,2014,25(2):177-212. [20]Hilary I O,Muminu O A,Timothy A.Closed form expressions for the quantile function of the Chi square distribution using the hybrid of quantile mechanics and spline interpolation[J]. Wireless Personal Communications,2020,115:2093-2112. [21]Hilary I O,Muminu O A,Timothy A.Approximations for the inverse cumulative distribution function of the Gamma distribution used in wireless communication[J].Heliyon,2020,6(11):240-252.