Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (1): 120-128.DOI: 10.12068/j.issn.1005-3026.2024.01.015
• Resources & Civil Engineering • Previous Articles Next Articles
Ze-ning MA, Cheng-man SHA, Ming-hao LU
Received:
2023-04-12
Online:
2024-01-15
Published:
2024-04-02
CLC Number:
Ze-ning MA, Cheng-man SHA, Ming-hao LU. Critical Slip Surface Search for Pile-Anchor Supported Deep Foundation Pits Based on Hybrid Fruit Fly Algorithm[J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 120-128.
土层数 | 1 | 支挡层数 | 无 |
---|---|---|---|
潜水情况 | 无 | 承压水 | 无 |
附加荷载类型 | 无 | 支挡类型 | 悬臂式 |
附加荷载大小 | 无 | 嵌固深度/m | 5 |
桩内侧水深/m | 无 | 桩顶到基坑底深度/m | 13 |
桩外侧水深/m | 无 | 桩顶到地面距离/m | 0 |
Table 1 General information
土层数 | 1 | 支挡层数 | 无 |
---|---|---|---|
潜水情况 | 无 | 承压水 | 无 |
附加荷载类型 | 无 | 支挡类型 | 悬臂式 |
附加荷载大小 | 无 | 嵌固深度/m | 5 |
桩内侧水深/m | 无 | 桩顶到基坑底深度/m | 13 |
桩外侧水深/m | 无 | 桩顶到地面距离/m | 0 |
算法 | 圆心坐标/m | 半径/m | 平均值 | 最大值 | 最小值 | 标准差 | 相对误 差/% | 绝对误差 | 单次计算时长/s |
---|---|---|---|---|---|---|---|---|---|
遗传算法 | (53.332,54.521) | 22.774 | 3.165 | 3.202 | 3.101 | 3.773×10-3 | 2.329 | 0.072 | 18.8 |
粒子群算法 | (52.908,52.302) | 20.051 | 3.145 | 3.266 | 3.081 | 5.890×10-3 | 1.681 | 0.052 | 7.9 |
蚁群算法 | (53.791,52.439) | 20.788 | 3.117 | 3.186 | 3.092 | 2.356×10-3 | 0.776 | 0.024 | 679.5 |
鱼群算法 | (53.701,52.008) | 20.395 | 3.124 | 3.144 | 3.089 | 1.683×10-3 | 1.002 | 0.031 | 125.6 |
模拟退火算法 | (47.432,57.014) | 25.209 | 3.675 | 3.891 | 3.688 | 1.459×10-2 | 18.817 | 0.582 | 24.1 |
标准果蝇算法 | (52.765,51.508) | 19.718 | 3.108 | 3.165 | 3.083 | 3.609×10-3 | 0.485 | 0.015 | 4.3 |
混合果蝇算法 | (51.935,50.694) | 18.792 | 3.089 | 3.095 | 3.082 | 6.771×10-4 | -0.129 | -0.004 | 15.8 |
枚举法 | (52.000,50.900) | 19.200 | 3.093 | — | — | — | — | — | 12 359.2 |
Table 3 Calculation results of various algorithms
算法 | 圆心坐标/m | 半径/m | 平均值 | 最大值 | 最小值 | 标准差 | 相对误 差/% | 绝对误差 | 单次计算时长/s |
---|---|---|---|---|---|---|---|---|---|
遗传算法 | (53.332,54.521) | 22.774 | 3.165 | 3.202 | 3.101 | 3.773×10-3 | 2.329 | 0.072 | 18.8 |
粒子群算法 | (52.908,52.302) | 20.051 | 3.145 | 3.266 | 3.081 | 5.890×10-3 | 1.681 | 0.052 | 7.9 |
蚁群算法 | (53.791,52.439) | 20.788 | 3.117 | 3.186 | 3.092 | 2.356×10-3 | 0.776 | 0.024 | 679.5 |
鱼群算法 | (53.701,52.008) | 20.395 | 3.124 | 3.144 | 3.089 | 1.683×10-3 | 1.002 | 0.031 | 125.6 |
模拟退火算法 | (47.432,57.014) | 25.209 | 3.675 | 3.891 | 3.688 | 1.459×10-2 | 18.817 | 0.582 | 24.1 |
标准果蝇算法 | (52.765,51.508) | 19.718 | 3.108 | 3.165 | 3.083 | 3.609×10-3 | 0.485 | 0.015 | 4.3 |
混合果蝇算法 | (51.935,50.694) | 18.792 | 3.089 | 3.095 | 3.082 | 6.771×10-4 | -0.129 | -0.004 | 15.8 |
枚举法 | (52.000,50.900) | 19.200 | 3.093 | — | — | — | — | — | 12 359.2 |
土层数 | 6 | 支挡层数 | 2 |
---|---|---|---|
潜水情况 | 静水 | 承压水 | 无 |
附加荷载类型 | 均布附加荷载 | 支挡类型 | 锚拉式 |
附加荷载大小/(kPa·m-1) | 15 | 嵌固深度/m | 5 |
桩内测水深/m | 14 | 桩顶到基坑底深度/m | 13 |
桩外侧水深/m | 14 | 桩顶到地面距离/m | 0 |
Table 4 General information
土层数 | 6 | 支挡层数 | 2 |
---|---|---|---|
潜水情况 | 静水 | 承压水 | 无 |
附加荷载类型 | 均布附加荷载 | 支挡类型 | 锚拉式 |
附加荷载大小/(kPa·m-1) | 15 | 嵌固深度/m | 5 |
桩内测水深/m | 14 | 桩顶到基坑底深度/m | 13 |
桩外侧水深/m | 14 | 桩顶到地面距离/m | 0 |
序号 | 每层土深度 | 重度 | 内聚力 | 内摩擦角 | 与锚固体摩擦阻力 | 水下黏聚力 | 水下内摩擦角 | 水下重度 |
---|---|---|---|---|---|---|---|---|
m | kN·m-3 | kPa | (°) | kPa | kPa | (°) | kN·m-3 | |
1 | 1.2 | 18.0 | 5.0 | 10.0 | 18.0 | 5.0 | 10.0 | 18.0 |
2 | 3.3 | 19.4 | 36.7 | 13.8 | 50.0 | 36.7 | 13.8 | 19.4 |
3 | 2.7 | 18.8 | 35.5 | 12.7 | 35.0 | 35.5 | 12.7 | 18.8 |
4 | 1.3 | 19.0 | 0 | 33.7 | 10.0 | 0 | 33.7 | 19.0 |
5 | 4.5 | 19.5 | 0 | 38.3 | 190.0 | 0 | 38.3 | 19.5 |
6 | 50.0 | 18.0 | 0 | 38.3 | 190.0 | 0 | 38.0 | 18.0 |
Table 5 Soil information
序号 | 每层土深度 | 重度 | 内聚力 | 内摩擦角 | 与锚固体摩擦阻力 | 水下黏聚力 | 水下内摩擦角 | 水下重度 |
---|---|---|---|---|---|---|---|---|
m | kN·m-3 | kPa | (°) | kPa | kPa | (°) | kN·m-3 | |
1 | 1.2 | 18.0 | 5.0 | 10.0 | 18.0 | 5.0 | 10.0 | 18.0 |
2 | 3.3 | 19.4 | 36.7 | 13.8 | 50.0 | 36.7 | 13.8 | 19.4 |
3 | 2.7 | 18.8 | 35.5 | 12.7 | 35.0 | 35.5 | 12.7 | 18.8 |
4 | 1.3 | 19.0 | 0 | 33.7 | 10.0 | 0 | 33.7 | 19.0 |
5 | 4.5 | 19.5 | 0 | 38.3 | 190.0 | 0 | 38.3 | 19.5 |
6 | 50.0 | 18.0 | 0 | 38.3 | 190.0 | 0 | 38.0 | 18.0 |
支锚 序号 | 水平间距 | 竖向间距 | 入射角 | 总长 | 锚固段长度 | 预加力 | 支锚刚度 | 初始位移 | 锚固体直径 | 材料抗力 |
---|---|---|---|---|---|---|---|---|---|---|
m | m | (°) | m | m | kN | mN·m-1 | m | mm | kN | |
1 | 1.2 | 4.50 | 15.00 | 16.50 | 9.00 | 150.00 | 6.54 | 0.00 | 150.00 | 520.80 |
2 | 1.2 | 9.00 | 15.00 | 11.50 | 6.50 | 200.00 | 23.18 | 0.00 | 150.00 | 781.20 |
Table 6 Anchor information
支锚 序号 | 水平间距 | 竖向间距 | 入射角 | 总长 | 锚固段长度 | 预加力 | 支锚刚度 | 初始位移 | 锚固体直径 | 材料抗力 |
---|---|---|---|---|---|---|---|---|---|---|
m | m | (°) | m | m | kN | mN·m-1 | m | mm | kN | |
1 | 1.2 | 4.50 | 15.00 | 16.50 | 9.00 | 150.00 | 6.54 | 0.00 | 150.00 | 520.80 |
2 | 1.2 | 9.00 | 15.00 | 11.50 | 6.50 | 200.00 | 23.18 | 0.00 | 150.00 | 781.20 |
算法 | 圆心坐标/m | 半径/m | 平均值 | 最大值 | 最小值 | 标准差 | 相对误差/% | 绝对误差 | 单次计算 时长/s |
---|---|---|---|---|---|---|---|---|---|
遗传算法 | (53.181,50.848) | 20.944 | 1.920 | 1.951 | 1.914 | 1.120×10-2 | 2.280 | 0.043 | 208.3 |
粒子群算法 | (54.003,51.015) | 20.028 | 1.918 | 1.927 | 1.906 | 8.123×10-3 | 1.854 | 0.041 | 114.2 |
蚁群算法 | (55.156,54.401) | 23.071 | 1.924 | 1.954 | 1.906 | 2.571×10-2 | 2.493 | 0.047 | 861.2 |
人工鱼群算法 | (52.779,50.588) | 18.571 | 1.940 | 1.973 | 1.910 | 1.809×10-2 | 3.345 | 0.063 | 231.3 |
模拟退火算法 | (61.065,64.253) | 34.503 | 2.094 | 2.257 | 1.982 | 1.154×10-1 | 11.549 | 0.217 | 34.6 |
标准果蝇算法 | (54.855,50.609) | 19.138 | 1.926 | 1.962 | 1.885 | 2.24×10-2 | 1.960 | 0.049 | 78.1 |
混合果蝇算法 | (54.068,50.600) | 19.051 | 1.875 | 1.897 | 1.872 | 6.506×10-3 | -0.117 | -0.002 | 94.1 |
枚举法 | (54.100,50.600) | 19.000 | 1.877 | — | — | — | — | — | 14 052.4 |
Table 7 Calculation results of various algorithms
算法 | 圆心坐标/m | 半径/m | 平均值 | 最大值 | 最小值 | 标准差 | 相对误差/% | 绝对误差 | 单次计算 时长/s |
---|---|---|---|---|---|---|---|---|---|
遗传算法 | (53.181,50.848) | 20.944 | 1.920 | 1.951 | 1.914 | 1.120×10-2 | 2.280 | 0.043 | 208.3 |
粒子群算法 | (54.003,51.015) | 20.028 | 1.918 | 1.927 | 1.906 | 8.123×10-3 | 1.854 | 0.041 | 114.2 |
蚁群算法 | (55.156,54.401) | 23.071 | 1.924 | 1.954 | 1.906 | 2.571×10-2 | 2.493 | 0.047 | 861.2 |
人工鱼群算法 | (52.779,50.588) | 18.571 | 1.940 | 1.973 | 1.910 | 1.809×10-2 | 3.345 | 0.063 | 231.3 |
模拟退火算法 | (61.065,64.253) | 34.503 | 2.094 | 2.257 | 1.982 | 1.154×10-1 | 11.549 | 0.217 | 34.6 |
标准果蝇算法 | (54.855,50.609) | 19.138 | 1.926 | 1.962 | 1.885 | 2.24×10-2 | 1.960 | 0.049 | 78.1 |
混合果蝇算法 | (54.068,50.600) | 19.051 | 1.875 | 1.897 | 1.872 | 6.506×10-3 | -0.117 | -0.002 | 94.1 |
枚举法 | (54.100,50.600) | 19.000 | 1.877 | — | — | — | — | — | 14 052.4 |
序号 | 每层土深度 | 重度 | 内聚力 | 内摩擦角 | 与锚固体摩擦阻力 | 水下黏聚力 | 水下内摩擦角 | 水下重度 |
---|---|---|---|---|---|---|---|---|
m | kN·m3 | kPa | (°) | kPa | kPa | (°) | kN·m3 | |
1 | 1.20 | 18.00 | 5.00 | 10.00 | 18.00 | 5.00 | 10.00 | 18.00 |
2 | 3.30 | 19.40 | 36.70 | 13.80 | 50.00 | 36.70 | 13.80 | 19.40 |
3 | 2.70 | 18.80 | 35.50 | 12.70 | 35.00 | 35.50 | 12.70 | 18.80 |
4 | 1.30 | 19.00 | 0 | 33.70 | 10.00 | 0 | 33.70 | 19.00 |
5 | 4.50 | 19.50 | 0 | 38.30 | 190.00 | 0 | 38.30 | 19.50 |
6 | 6.00 | 18.00 | 0 | 38.30 | 190.00 | 0 | 38.00 | 8.00 |
7 | 2.00 | 18.00 | 0 | 10.00 | 18.00 | 0 | 10.00 | 8.00 |
8 | 50.00 | 18.00 | 0 | 38.30 | 190.00 | 0 | 38.00 | 8.00 |
Table 8 Soil information
序号 | 每层土深度 | 重度 | 内聚力 | 内摩擦角 | 与锚固体摩擦阻力 | 水下黏聚力 | 水下内摩擦角 | 水下重度 |
---|---|---|---|---|---|---|---|---|
m | kN·m3 | kPa | (°) | kPa | kPa | (°) | kN·m3 | |
1 | 1.20 | 18.00 | 5.00 | 10.00 | 18.00 | 5.00 | 10.00 | 18.00 |
2 | 3.30 | 19.40 | 36.70 | 13.80 | 50.00 | 36.70 | 13.80 | 19.40 |
3 | 2.70 | 18.80 | 35.50 | 12.70 | 35.00 | 35.50 | 12.70 | 18.80 |
4 | 1.30 | 19.00 | 0 | 33.70 | 10.00 | 0 | 33.70 | 19.00 |
5 | 4.50 | 19.50 | 0 | 38.30 | 190.00 | 0 | 38.30 | 19.50 |
6 | 6.00 | 18.00 | 0 | 38.30 | 190.00 | 0 | 38.00 | 8.00 |
7 | 2.00 | 18.00 | 0 | 10.00 | 18.00 | 0 | 10.00 | 8.00 |
8 | 50.00 | 18.00 | 0 | 38.30 | 190.00 | 0 | 38.00 | 8.00 |
算法 | 圆心坐标/m | 半径/m | 平均值 | 最大值 | 最小值 | 标准差 | 相对误差/% | 绝对误差 | 单次计算时长/s |
---|---|---|---|---|---|---|---|---|---|
遗传算法 | (52.181,53.136) | 29.023 | 1.361 | 1.482 | 1.287 | 6.146×10-2 | 5.937 | 0.076 | 312.8 |
粒子群算法 | (51.324,46.403) | 17.372 | 1.343 | 1.398 | 1.287 | 4.665×10-2 | 4.502 | 0.058 | 156.2 |
蚁群算法 | (52.199,53.865) | 24.733 | 1.371 | 1.435 | 1.312 | 2.053×10-2 | 6.697 | 0.086 | 1 035.2 |
人工鱼群算法 | (52.881,57.135) | 28.023 | 1.387 | 1.434 | 1.320 | 3.245×10-2 | 7.899 | 0.102 | 326.4 |
模拟退火算法 | (53.928,54.474) | 26.220 | 1.673 | 1.959 | 1.434 | 1.555×10-1 | 30.215 | 0.388 | 91.4 |
标准果蝇算法 | (50.012,50.960) | 21.968 | 1.347 | 1.376 | 1.297 | 3.609×10-2 | 4.855 | 0.062 | 78.2 |
混合果蝇算法 | (52.900,48.341) | 19.167 | 1.290 | 1.293 | 1.288 | 1.591×10-3 | 0.427 | 0.005 | 155.8 |
枚举法 | (52.300,48.000) | 19.100 | 1.285 | — | — | — | — | — | 14 945.1 |
Table 9 Calculation results of various algorithms
算法 | 圆心坐标/m | 半径/m | 平均值 | 最大值 | 最小值 | 标准差 | 相对误差/% | 绝对误差 | 单次计算时长/s |
---|---|---|---|---|---|---|---|---|---|
遗传算法 | (52.181,53.136) | 29.023 | 1.361 | 1.482 | 1.287 | 6.146×10-2 | 5.937 | 0.076 | 312.8 |
粒子群算法 | (51.324,46.403) | 17.372 | 1.343 | 1.398 | 1.287 | 4.665×10-2 | 4.502 | 0.058 | 156.2 |
蚁群算法 | (52.199,53.865) | 24.733 | 1.371 | 1.435 | 1.312 | 2.053×10-2 | 6.697 | 0.086 | 1 035.2 |
人工鱼群算法 | (52.881,57.135) | 28.023 | 1.387 | 1.434 | 1.320 | 3.245×10-2 | 7.899 | 0.102 | 326.4 |
模拟退火算法 | (53.928,54.474) | 26.220 | 1.673 | 1.959 | 1.434 | 1.555×10-1 | 30.215 | 0.388 | 91.4 |
标准果蝇算法 | (50.012,50.960) | 21.968 | 1.347 | 1.376 | 1.297 | 3.609×10-2 | 4.855 | 0.062 | 78.2 |
混合果蝇算法 | (52.900,48.341) | 19.167 | 1.290 | 1.293 | 1.288 | 1.591×10-3 | 0.427 | 0.005 | 155.8 |
枚举法 | (52.300,48.000) | 19.100 | 1.285 | — | — | — | — | — | 14 945.1 |
1 | Li Z, Zhao G F, Deng X F,et al.Further development of distinct lattice spring model for stability and collapse analysis of deep foundation pit excavation[J].Computers and Geotechnics,2022,144:104619. |
2 | 肖专文,张奇志,梁力,等.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,1998,20(1):44-46. |
Xiao Zhuan‐wen, Zhang Qi‐zhi, Liang Li,et al.Application of genetic evolutionary algorithm for slope stability analysis[J].Chinese Journal of Geotechnical Engineering,1998,20(1):44-46. | |
3 | Liu B W, Wang Z W, Zhong X Y.Particle swarm optimization algorithm in numerical simulation of saturated rock slope slip[J].Mathematical Problems in Engineering,2021,2021:6682659. |
4 | Gao W.Premium‐penalty ant colony optimization and its application in slope stability analysis[J].Applied Soft Computing,2016,43:480-488. |
5 | Zhu J F, Chen C F.Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm[J].Journal of Central South University,2014,21:387-397. |
6 | 胡军,王凯凯,黄贵臣.基于自繁衍鱼群算法的土质边坡滑动面搜索[J].金属矿山,2016(2):132-136. |
Hu Jun, Wang Kai‐kai, Huang Gui‐chen.Searching for the slip surface of soil slopes based on the breeding fish algorithm[J].Metal Mine,2016(2):132-136. | |
7 | 李守巨,刘迎曦,何翔,等.基于模拟退火算法的边坡最小安全系数全局搜索方法[J].岩石力学与工程学报,2003,22(2):236-240. |
Li Shou‐ju, Liu Ying‐xi, He Xiang,et al.Global search algorithm of minimum safety factor for slope stability analysis based on annealing simulation[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(2):236-240. | |
8 | 潘文超.应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J].太原理工大学学报(社会科学版),2011,29(4):1-5. |
Pan Wen‐chao.Using fruit fly optimization algorithm optimized general regression neural network to construct the operating performance of enterprises model[J].Journal of Taiyuan University of Technology (Social Sciences Edition),2011,29(4):1-5. | |
9 | 吴小文,李擎.果蝇算法和5种群智能算法的寻优性能研究[J].火力与指挥控制,2013,38(4):17-20,25. |
Wu Xiao‐wen, Li Qing.Research of optimizing performance of fruit fly optimization algorithm and five kinds of intelligent algorithm[J].Fire Control & Command Control,2013,38(4):17-20,25. | |
10 | Bishop A W.The use of the slip circle in the stability analysis of slopes[J].Géotechnique,1955,5(1):7-17. |
11 | 王笙屹.土钉墙内部稳定性分析优化算法研究[D].赣州:江西理工大学,2013. |
Wang Sheng‐yi.Study on optimization algorithm of internal stability analysis of soil nailing wall[D].Ganzhou:Jiangxi University of Science and Technology,2013. | |
12 | Xiong C B, Lian S D.Structural damage identification based on improved fruit fly optimization algorithm[J].KSCE Journal of Civil Engineering,2021,25(3):1-23. |
13 | 张彩宏,潘广贞.融合禁忌搜索的混合果蝇优化算法[J].计算机工程与设计,2016,37(4):907-913. |
Zhang Cai‐hong, Pan Guang‐zhen.Fruit fly optimization algorithm based on Tabu search[J].Computer Engineering and Design,2016,37(4):907-913. | |
14 | Bian H L.Study on chaotic time series prediction algorithm for kent mapping based on particle swarm optimization[J].Applied Mechanics and Materials,2014,511/512:941-944. |
15 | 刘建军,石定元,武国宁.基于Kent映射的混合混沌优化算法[J].计算机工程与设计,2015,36(6):1498-1503. |
Liu Jian‐jun, Shi Ding‐yuan, Wu Guo‐ning.Hybrid chaotic optimization algorithm based on Kent map[J].Computer Engineering and Design,2015,36(6):1498-1503. | |
16 | Demidova L A, Gorchakov A V.Application of chaotic fish school search optimization algorithm with exponential step decay in neural network loss function optimization[J].Procedia Computer Science,2021,186:352-359. |
[1] | WANG Xing-kai1,2, WU Wei-min1,2, XING Zi-chao1,2, NIU Hao-yi1,2. Research on the AGV Scheduling Problem in the No-buffer Assembly Line [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 58-67. |
[2] | WANG Shu-hong, WEI Wei, HAN Wen-shuai, CHEN Hao. Global Optimization Search Method for Minimum Safety Factor of Slope Based on Chaotic Grey Wolf Optimization Algorithm [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 1033-1042. |
[3] | WANG Qian-kun, KANG Xian-wei, ZHU Ke. Coupling Evaluation Method of the Construction Risk for Subway Deep Foundation Pit [J]. Journal of Northeastern University(Natural Science), 2021, 42(8): 1152-1158. |
[4] | ZHANG Li-jie, LIU Jian-chang, TAN Shu-bin. Multi-objective Planning of Personnel Evacuation Route in Complex Building Fire [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 761-766. |
[5] | CHEN Yang, ZHAO Wen, JIA Peng-jiao, HAN Jian-yong. Stability Assessment and Mechanical Effects Analysis on Deep Foundation Pit in Sandy Soil [J]. Journal of Northeastern University Natural Science, 2018, 39(9): 1353-1357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||