Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (4): 464-473.DOI: 10.12068/j.issn.1005-3026.2024.04.002
• Information & Control • Previous Articles
Jin-lin CHEN, Pei-xin YUAN
Received:
2022-12-17
Online:
2024-04-15
Published:
2024-06-26
CLC Number:
Jin-lin CHEN, Pei-xin YUAN. Hybrid Denoising Algorithm for Medical CT Sequence Images[J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 464-473.
腰椎 | 骨架 | 膝盖 | 头部女 | 头部男 | 髋部女 | 髋部男 | 骨盆男 | 踝关节 | 肩部男 |
---|---|---|---|---|---|---|---|---|---|
0.990 9 | 0.955 6 | 0.992 1 | 0.990 2 | 0.990 0 | 0.970 6 | 0.968 2 | 0.989 7 | 0.975 1 | 0.988 2 |
Table 1 SSIM of CT sequences
腰椎 | 骨架 | 膝盖 | 头部女 | 头部男 | 髋部女 | 髋部男 | 骨盆男 | 踝关节 | 肩部男 |
---|---|---|---|---|---|---|---|---|---|
0.990 9 | 0.955 6 | 0.992 1 | 0.990 2 | 0.990 0 | 0.970 6 | 0.968 2 | 0.989 7 | 0.975 1 | 0.988 2 |
评价标准 | 本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 19.661 7 | 104.491 8 | 106.853 1 | 104.768 4 | 103.511 6 | 104.627 9 | 104.655 4 | 104.876 5 | 103.347 5 | 104.231 8 |
PSNR/dB | 35.685 9 | 27.974 3 | 27.871 4 | 27.961 2 | 28.017 8 | 27.968 1 | 27.966 0 | 27.956 2 | 28.025 4 | 27.985 6 |
sim | 0.777 4 | 0.574 7 | 0.660 0 | 0.594 5 | 0.554 0 | 0.581 2 | 0.597 0 | 0.605 9 | 0.547 4 | 0.575 3 |
Table 2 Objective judgement of lumbar spine CT images (1)
评价标准 | 本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 19.661 7 | 104.491 8 | 106.853 1 | 104.768 4 | 103.511 6 | 104.627 9 | 104.655 4 | 104.876 5 | 103.347 5 | 104.231 8 |
PSNR/dB | 35.685 9 | 27.974 3 | 27.871 4 | 27.961 2 | 28.017 8 | 27.968 1 | 27.966 0 | 27.956 2 | 28.025 4 | 27.985 6 |
sim | 0.777 4 | 0.574 7 | 0.660 0 | 0.594 5 | 0.554 0 | 0.581 2 | 0.597 0 | 0.605 9 | 0.547 4 | 0.575 3 |
评价标准 | 本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 19.661 7 | 27.723 3 | 25.165 5 | 27.733 0 | 28.008 0 | 27.664 8 | 27.801 6 | 27.650 3 | 28.260 2 | 27.898 7 |
PSNR/dB | 35.685 9 | 33.983 6 | 34.520 5 | 33.994 4 | 33.928 9 | 33.997 2 | 33.991 3 | 34.027 9 | 33.887 1 | 33.960 0 |
sim | 0.777 4 | 0.749 6 | 0.812 8 | 0.769 5 | 0.743 0 | 0.756 1 | 0.771 8 | 0.780 4 | 0.724 4 | 0.753 6 |
Table 3 Objective judgement of lumbar spine CT images (2)
评价标准 | 本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 19.661 7 | 27.723 3 | 25.165 5 | 27.733 0 | 28.008 0 | 27.664 8 | 27.801 6 | 27.650 3 | 28.260 2 | 27.898 7 |
PSNR/dB | 35.685 9 | 33.983 6 | 34.520 5 | 33.994 4 | 33.928 9 | 33.997 2 | 33.991 3 | 34.027 9 | 33.887 1 | 33.960 0 |
sim | 0.777 4 | 0.749 6 | 0.812 8 | 0.769 5 | 0.743 0 | 0.756 1 | 0.771 8 | 0.780 4 | 0.724 4 | 0.753 6 |
部位 | MSE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 | |
骨架 | 31.436 0 | 57.095 9 | 55.454 0 | 56.807 2 | 56.748 1 | 57.113 0 | 54.555 6 | 54.158 4 | 56.710 8 | 56.838 4 |
膝盖 | 21.783 0 | 30.068 1 | 29.906 4 | 30.030 5 | 30.015 7 | 30.056 7 | 29.891 7 | 29.891 3 | 30.010 3 | 30.054 7 |
头部女 | 13.113 2 | 28.145 4 | 27.435 6 | 27.973 5 | 28.029 4 | 28.090 8 | 27.602 4 | 27.549 7 | 28.018 2 | 28.074 8 |
头部男 | 21.928 2 | 38.183 4 | 37.271 5 | 38.025 6 | 38.049 1 | 38.142 8 | 37.647 3 | 37.591 1 | 38.036 0 | 38.106 9 |
髋部女 | 55.292 5 | 74.290 9 | 73.923 5 | 74.235 7 | 74.213 6 | 74.270 9 | 74.089 4 | 74.077 8 | 74.207 0 | 74.271 1 |
髋部男 | 44.590 3 | 80.712 8 | 80.360 5 | 80.668 9 | 80.694 5 | 80.697 4 | 80.551 9 | 80.508 5 | 80.693 5 | 80.699 7 |
骨盆男 | 57.087 6 | 94.132 4 | 93.540 0 | 94.002 8 | 94.105 0 | 94.075 4 | 93.689 3 | 93.658 9 | 94.102 9 | 94.123 1 |
踝关节 | 24.592 6 | 29.602 8 | 29.259 8 | 29.549 5 | 29.564 5 | 29.587 7 | 29.414 7 | 29.413 5 | 29.563 1 | 29.586 5 |
肩部男 | 53.722 2 | 94.426 3 | 94.047 4 | 94.270 5 | 93.863 3 | 94.439 7 | 94.171 5 | 94.203 0 | 93.841 9 | 94.234 5 |
Table 4 MSE after denoising
部位 | MSE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 | |
骨架 | 31.436 0 | 57.095 9 | 55.454 0 | 56.807 2 | 56.748 1 | 57.113 0 | 54.555 6 | 54.158 4 | 56.710 8 | 56.838 4 |
膝盖 | 21.783 0 | 30.068 1 | 29.906 4 | 30.030 5 | 30.015 7 | 30.056 7 | 29.891 7 | 29.891 3 | 30.010 3 | 30.054 7 |
头部女 | 13.113 2 | 28.145 4 | 27.435 6 | 27.973 5 | 28.029 4 | 28.090 8 | 27.602 4 | 27.549 7 | 28.018 2 | 28.074 8 |
头部男 | 21.928 2 | 38.183 4 | 37.271 5 | 38.025 6 | 38.049 1 | 38.142 8 | 37.647 3 | 37.591 1 | 38.036 0 | 38.106 9 |
髋部女 | 55.292 5 | 74.290 9 | 73.923 5 | 74.235 7 | 74.213 6 | 74.270 9 | 74.089 4 | 74.077 8 | 74.207 0 | 74.271 1 |
髋部男 | 44.590 3 | 80.712 8 | 80.360 5 | 80.668 9 | 80.694 5 | 80.697 4 | 80.551 9 | 80.508 5 | 80.693 5 | 80.699 7 |
骨盆男 | 57.087 6 | 94.132 4 | 93.540 0 | 94.002 8 | 94.105 0 | 94.075 4 | 93.689 3 | 93.658 9 | 94.102 9 | 94.123 1 |
踝关节 | 24.592 6 | 29.602 8 | 29.259 8 | 29.549 5 | 29.564 5 | 29.587 7 | 29.414 7 | 29.413 5 | 29.563 1 | 29.586 5 |
肩部男 | 53.722 2 | 94.426 3 | 94.047 4 | 94.270 5 | 93.863 3 | 94.439 7 | 94.171 5 | 94.203 0 | 93.841 9 | 94.234 5 |
部位 | PSNR/dB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 | |
骨架 | 33.384 7 | 30.629 9 | 30.758 3 | 30.652 5 | 30.657 8 | 30.628 6 | 30.833 4 | 30.866 2 | 30.661 2 | 30.650 1 |
膝盖 | 34.810 2 | 33.430 6 | 33.453 0 | 33.435 7 | 33.438 8 | 33.432 2 | 33.456 4 | 33.456 3 | 33.439 6 | 33.432 4 |
头部女 | 37.718 4 | 33.843 5 | 33.967 6 | 33.873 1 | 33.863 6 | 33.853 0 | 33.938 5 | 33.948 1 | 33.865 6 | 33.855 6 |
头部男 | 34.867 9 | 32.372 0 | 32.484 7 | 32.391 1 | 32.388 7 | 32.376 9 | 32.438 1 | 32.445 4 | 32.390 5 | 32.381 4 |
髋部女 | 31.014 2 | 29.726 8 | 29.749 2 | 29.730 4 | 29.730 3 | 29.728 0 | 29.740 2 | 29.740 8 | 29.730 7 | 29.727 7 |
髋部男 | 31.768 8 | 29.136 6 | 29.156 5 | 29.139 0 | 29.137 7 | 29.137 4 | 29.145 4 | 29.148 0 | 29.137 7 | 29.137 4 |
骨盆男 | 30.594 1 | 28.394 0 | 28.421 5 | 28.400 0 | 28.395 3 | 28.396 7 | 28.414 6 | 28.416 0 | 28.395 4 | 28.394 4 |
踝关节 | 34.371 5 | 33.512 2 | 33.566 1 | 33.520 7 | 33.518 4 | 33.514 6 | 33.542 8 | 33.542 9 | 33.518 7 | 33.514 8 |
肩部男 | 30.897 5 | 28.401 9 | 28.419 7 | 28.408 9 | 28.427 2 | 28.401 3 | 28.414 0 | 28.412 7 | 28.428 2 | 28.410 4 |
Table 5 PSNR after denoising
部位 | PSNR/dB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 | |
骨架 | 33.384 7 | 30.629 9 | 30.758 3 | 30.652 5 | 30.657 8 | 30.628 6 | 30.833 4 | 30.866 2 | 30.661 2 | 30.650 1 |
膝盖 | 34.810 2 | 33.430 6 | 33.453 0 | 33.435 7 | 33.438 8 | 33.432 2 | 33.456 4 | 33.456 3 | 33.439 6 | 33.432 4 |
头部女 | 37.718 4 | 33.843 5 | 33.967 6 | 33.873 1 | 33.863 6 | 33.853 0 | 33.938 5 | 33.948 1 | 33.865 6 | 33.855 6 |
头部男 | 34.867 9 | 32.372 0 | 32.484 7 | 32.391 1 | 32.388 7 | 32.376 9 | 32.438 1 | 32.445 4 | 32.390 5 | 32.381 4 |
髋部女 | 31.014 2 | 29.726 8 | 29.749 2 | 29.730 4 | 29.730 3 | 29.728 0 | 29.740 2 | 29.740 8 | 29.730 7 | 29.727 7 |
髋部男 | 31.768 8 | 29.136 6 | 29.156 5 | 29.139 0 | 29.137 7 | 29.137 4 | 29.145 4 | 29.148 0 | 29.137 7 | 29.137 4 |
骨盆男 | 30.594 1 | 28.394 0 | 28.421 5 | 28.400 0 | 28.395 3 | 28.396 7 | 28.414 6 | 28.416 0 | 28.395 4 | 28.394 4 |
踝关节 | 34.371 5 | 33.512 2 | 33.566 1 | 33.520 7 | 33.518 4 | 33.514 6 | 33.542 8 | 33.542 9 | 33.518 7 | 33.514 8 |
肩部男 | 30.897 5 | 28.401 9 | 28.419 7 | 28.408 9 | 28.427 2 | 28.401 3 | 28.414 0 | 28.412 7 | 28.428 2 | 28.410 4 |
部位 | sim | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 | |
骨架 | 0.579 5 | 0.495 5 | 0.526 3 | 0.504 1 | 0.495 6 | 0.496 9 | 0.516 1 | 0.519 5 | 0.492 7 | 0.499 5 |
膝盖 | 0.719 5 | 0.690 1 | 0.697 9 | 0.692 4 | 0.689 0 | 0.690 6 | 0.693 1 | 0.693 9 | 0.688 6 | 0.691 0 |
头部女 | 0.846 8 | 0.829 8 | 0.842 4 | 0.834 8 | 0.828 2 | 0.830 9 | 0.836 1 | 0.837 6 | 0.825 5 | 0.831 8 |
头部男 | 0.684 4 | 0.666 4 | 0.678 2 | 0.671 3 | 0.666 3 | 0.667 2 | 0.672 8 | 0.674 0 | 0.664 1 | 0.668 7 |
髋部女 | 0.598 2 | 0.523 9 | 0.543 2 | 0.532 0 | 0.522 4 | 0.525 1 | 0.532 5 | 0.535 7 | 0.521 8 | 0.528 0 |
髋部男 | 0.575 6 | 0.572 3 | 0.595 9 | 0.582 2 | 0.568 3 | 0.574 4 | 0.582 7 | 0.586 8 | 0.564 7 | 0.576 1 |
骨盆男 | 0.729 6 | 0.526 5 | 0.553 3 | 0.539 1 | 0.523 3 | 0.528 8 | 0.540 6 | 0.545 0 | 0.522 4 | 0.533 0 |
踝关节 | 0.684 7 | 0.666 1 | 0.671 5 | 0.668 1 | 0.666 5 | 0.666 4 | 0.668 9 | 0.669 3 | 0.666 3 | 0.667 4 |
肩部男 | 0.665 8 | 0.531 8 | 0.572 5 | 0.553 0 | 0.533 5 | 0.534 4 | 0.550 7 | 0.562 0 | 0.532 5 | 0.545 1 |
Table 6 SSIM after denoising
部位 | sim | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 | |
骨架 | 0.579 5 | 0.495 5 | 0.526 3 | 0.504 1 | 0.495 6 | 0.496 9 | 0.516 1 | 0.519 5 | 0.492 7 | 0.499 5 |
膝盖 | 0.719 5 | 0.690 1 | 0.697 9 | 0.692 4 | 0.689 0 | 0.690 6 | 0.693 1 | 0.693 9 | 0.688 6 | 0.691 0 |
头部女 | 0.846 8 | 0.829 8 | 0.842 4 | 0.834 8 | 0.828 2 | 0.830 9 | 0.836 1 | 0.837 6 | 0.825 5 | 0.831 8 |
头部男 | 0.684 4 | 0.666 4 | 0.678 2 | 0.671 3 | 0.666 3 | 0.667 2 | 0.672 8 | 0.674 0 | 0.664 1 | 0.668 7 |
髋部女 | 0.598 2 | 0.523 9 | 0.543 2 | 0.532 0 | 0.522 4 | 0.525 1 | 0.532 5 | 0.535 7 | 0.521 8 | 0.528 0 |
髋部男 | 0.575 6 | 0.572 3 | 0.595 9 | 0.582 2 | 0.568 3 | 0.574 4 | 0.582 7 | 0.586 8 | 0.564 7 | 0.576 1 |
骨盆男 | 0.729 6 | 0.526 5 | 0.553 3 | 0.539 1 | 0.523 3 | 0.528 8 | 0.540 6 | 0.545 0 | 0.522 4 | 0.533 0 |
踝关节 | 0.684 7 | 0.666 1 | 0.671 5 | 0.668 1 | 0.666 5 | 0.666 4 | 0.668 9 | 0.669 3 | 0.666 3 | 0.667 4 |
肩部男 | 0.665 8 | 0.531 8 | 0.572 5 | 0.553 0 | 0.533 5 | 0.534 4 | 0.550 7 | 0.562 0 | 0.532 5 | 0.545 1 |
评价标准 | 本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 31.436 0 | 36.435 5 | 34.052 7 | 36.517 3 | 36.392 6 | 36.528 9 | 34.287 4 | 33.961 0 | 36.408 1 | 36.282 9 |
PSNR/dB | 33.384 7 | 32.714 6 | 33.089 3 | 32.715 1 | 32.719 3 | 32.704 3 | 33.017 7 | 33.064 9 | 32.717 6 | 32.738 2 |
sim | 0.579 5 | 0.562 0 | 0.586 7 | 0.569 2 | 0.561 6 | 0.563 8 | 0.578 1 | 0.581 5 | 0.558 9 | 0.566 1 |
Table 7 Objective judgement of skeleton CT images
评价标准 | 本文算法 | 维纳滤波 | K-SVD | NLM | BM3D | 中值滤波 | 均值滤波 | 高斯滤波 | 双边滤波 | 各向异性滤波 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 31.436 0 | 36.435 5 | 34.052 7 | 36.517 3 | 36.392 6 | 36.528 9 | 34.287 4 | 33.961 0 | 36.408 1 | 36.282 9 |
PSNR/dB | 33.384 7 | 32.714 6 | 33.089 3 | 32.715 1 | 32.719 3 | 32.704 3 | 33.017 7 | 33.064 9 | 32.717 6 | 32.738 2 |
sim | 0.579 5 | 0.562 0 | 0.586 7 | 0.569 2 | 0.561 6 | 0.563 8 | 0.578 1 | 0.581 5 | 0.558 9 | 0.566 1 |
1 | Balda M, Hornegger J, Heismann B.Ray contribution masks for structure adaptive sinogram filtering[J].IEEE Transactions on Medical Imaging,2012,31(6):1228-1239. |
2 | Chen H, Zhang Y, Zhang W H,et al.Low‑dose CT via convolutional neural network[J].Biomedical Optics Express,2017,8(2):679-694. |
3 | Nishio M, Nagashima C, Hirabayashi S,et al.Convolutional auto‐encoder for image denoising of ultra‐low‐dose CT[J].Heliyon,2017,3(8):e00393. |
4 | Chen H, Zhang Y, Kalra M K,et al.Low‐dose CT with a residual encoder‐decoder convolutional neural network[J].IEEE Transactions on Medical Imaging,2017,36(12):2524-2535. |
5 | Yamanappa W, Sudeep P V, Sabu M K,et al.Non‐local means image denoising using Shapiro‑Wilk similarity measure[J].IEEE Access,2018,6:66914-66922. |
6 | Dabov K, Foi A, Katkovnik V,et al.Image denoising by sparse 3‐D transform‐domain collaborative filtering[J].IEEE Transaction on Image Processing,2007,16(8):2080-2095. |
7 | Elad M, Aharon M.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3766-3745. |
8 | Aharon M, Elad M, Bruckstein A.K‐SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322. |
9 | Zoran D, Weiss Y.From learning models of natural image patches to whole image restoration[C]//International Conference on Computer Vison(ICCV).Barcelona:IEEE,2011:479-486. |
10 | Huang S S, Zhu J B.Recovery of sparse signals using OMP and its variants:convergence analysis based on RIP[J].Inverse Problems,2011,27(3):e035003. |
11 | Ohhashi A, Yamada S, Haruki K,et al. Automatic adjustment of display window (gray level) for MR images using a neural network[C]//International Society for Optics and Photonics. San Jose:SPIE,1991:63-74. |
12 | 周振环,陈思平,陶笃纯,等.医学图像的自动调窗与分割[J].生物医学工程学杂志,2005,22(2):331-334. |
Zhou Zhen‐huan, Chen Si‐ping, Tao Du‐chun,et al.Medical image automatic adjusting window and segmentation[J].Journal of Biomedical Engineering,2005,22(2):331-334. | |
13 | 沈琴,蒋谟文,骆建华.一种改进的磁共振图像自动调窗算法[J].中国医疗器械杂志,2011,35(4):253-255. |
Shen Qin, Jiang Mo‐wen, Luo Jian‐hua.An improved auto‐window algorithm for MR image[J].Chinese Journal of Medical Instrumentation,2011,35(4):253-255. | |
14 | 吕磊,赵勋杰.一种16位灰度图像自动调窗算法[J].光电技术应用,2016,31(4):27-30,45. |
Lei Lyu, Zhao Xun‐jie.Auto‐window algorithm for 16‐bit grayscale image[J].Electro‐Optic Technology Application,2016,31(4):27-30,45. | |
15 | Mantri M, Taran S, Sunder G.DICOM integration libraries for medical image interoperability:a technical review[J].IEEE Reviews in Biomedical Engineering,2022,15:247-259. |
16 | Li X R, Morgan P S, Ashburner J,et al.The first step for neuroimaging data analysis:DICOM to NIfTI conversion[J].Journal of Neuroscience Methods,2016,264:47-56. |
17 | Gueld M O, Kohnen M, Keysers D,et al.Quality of DICOM header information for image categorization [C]//Medical Imaging 2002:PACS and Integrated Medical Information Systems:Design and Evaluation. San Diego,California,2002:280-287. |
18 | Chen L, Li C Q, Li C.Security measurement of a medical communication scheme based on chaos and DNA coding[J].Journal of Visual Communication and Image Representation,2022,83:103424. |
19 | Bashar F, El‐Sakka M R.BM3D image denoising using learning‐based adaptive hard thresholding[C]//Proceedings of the 11th Joint Conference on Computer Vision,Imaging and Computer Graphics Theory and Applications.Rome:IEEE,2015:204-214. |
20 | Elad M, Aharon M.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745. |
21 | Sendur L, Selesnick I W.Bivariate shrinkage functions for wavelet‑based denoising exploiting interscale dependency[J].IEEE Transactions on Signal Processing,2002,50(11):2744-2756. |
22 | Vo B N, Vo B T, Hoang H G.An efficient implementation of the generalized labeled multi‐Bernoulli filter[J].IEEE Transactions on Signal Processing,2017,65(8):1975-1987. |
[1] | CHEN Jin-lin, YUAN Pei-xin, HOU Hao-nan, ZHAO Zhao. Self-adaptation Adjusting Window Width and Window Level Algorithm for Medical CT Sequence Images [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1392-1400. |
[2] | WANG Shu, GUAN Zhan-xu, WANG Jing, SUN Xiao-hui. Bayesian Network Parameter Learning Method Based on Transfer Learning [J]. Journal of Northeastern University(Natural Science), 2021, 42(4): 509-515. |
[3] | ZHANG Qi-long, WEN Tao, SONG Xiao-ying, SUN Wei. Reversible Data Hiding Algorithm Based on Adaptive Histogram Modification for 3D Mesh Models [J]. Journal of Northeastern University Natural Science, 2020, 41(3): 316-321. |
[4] | GUO Qiang, WU Cheng-dong, ZHAO Ying-chun. Robust Visual Tracking with Distribution Fields Feature Selection Based on Online Discrimination [J]. Journal of Northeastern University Natural Science, 2017, 38(3): 305-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||