Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (4): 555-563.DOI: 10.12068/j.issn.1005-3026.2024.04.013
• Mechanical Engineering • Previous Articles
Da-yong GAO, Jian-yong LIN, Ya-ting TIAN, Hong-liang YAO
Received:
2022-12-27
Online:
2024-04-15
Published:
2024-06-26
CLC Number:
Da-yong GAO, Jian-yong LIN, Ya-ting TIAN, Hong-liang YAO. Mechanism and Efficiency of Combined Longitudinal-Torsional Vibration-Assisted Rock Drilling[J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 555-563.
试验材料 | 密度/(kg·m-3) | 泊松比 | 弹性模量/GPa |
---|---|---|---|
软岩 | 2 483 | 0.204 | 17.7 |
硬质合金 | 14 800 | 0.24 | 510 |
Table 1 Physical parameter settings
试验材料 | 密度/(kg·m-3) | 泊松比 | 弹性模量/GPa |
---|---|---|---|
软岩 | 2 483 | 0.204 | 17.7 |
硬质合金 | 14 800 | 0.24 | 510 |
材料 | 恢复系数 | 静摩擦系数 | 动摩擦系数 |
---|---|---|---|
软岩和软岩 | 0.20 | 0.70 | 0.10 |
软岩和硬质合金 | 0.50 | 0.60 | 0.07 |
Table 2 Contact parameter settings
材料 | 恢复系数 | 静摩擦系数 | 动摩擦系数 |
---|---|---|---|
软岩和软岩 | 0.20 | 0.70 | 0.10 |
软岩和硬质合金 | 0.50 | 0.60 | 0.07 |
法向刚度 | 切向刚度 | 法向强度 | 切向强度 | 黏结半径 |
---|---|---|---|---|
N·m-3 | N·m-3 | Pa | Pa | mm |
1.15×109 | 4.6×108 | 5×107 | 2×107 | 1.5 |
Table 3 Adhesive bond parameter settings
法向刚度 | 切向刚度 | 法向强度 | 切向强度 | 黏结半径 |
---|---|---|---|---|
N·m-3 | N·m-3 | Pa | Pa | mm |
1.15×109 | 4.6×108 | 5×107 | 2×107 | 1.5 |
钻削情况 | 钻头直径 | 转速 | 压力 | 频率 | 转矩 |
---|---|---|---|---|---|
mm | r·min-1 | N | Hz | N·m | |
常规 | 16 | 3 300 | 50 | 0 | 0 |
纵 | 16 | 3 300 | 50 | 100 | 0 |
扭 | 16 | 3 300 | 50 | 0 | 140 |
纵-扭 | 16 | 3 300 | 50 | 100 | 140 |
Table 4 Parameters for the four drilling cases
钻削情况 | 钻头直径 | 转速 | 压力 | 频率 | 转矩 |
---|---|---|---|---|---|
mm | r·min-1 | N | Hz | N·m | |
常规 | 16 | 3 300 | 50 | 0 | 0 |
纵 | 16 | 3 300 | 50 | 100 | 0 |
扭 | 16 | 3 300 | 50 | 0 | 140 |
纵-扭 | 16 | 3 300 | 50 | 100 | 140 |
序号 | 转速/(r·min-1) | 激振频率/Hz | 钻头直径/mm |
---|---|---|---|
1 | 1 200 | 47.71 | 3 |
2 | 1 200 | 82.44 | 5 |
3 | 1 200 | 111.22 | 8 |
4 | 2 500 | 47.71 | 5 |
5 | 2 500 | 82.44 | 8 |
6 | 2 500 | 111.22 | 3 |
7 | 3 300 | 47.71 | 8 |
8 | 3 300 | 82.44 | 3 |
9 | 3 300 | 111.22 | 5 |
Table 5 Vibratory rock‐breaking test parameters
序号 | 转速/(r·min-1) | 激振频率/Hz | 钻头直径/mm |
---|---|---|---|
1 | 1 200 | 47.71 | 3 |
2 | 1 200 | 82.44 | 5 |
3 | 1 200 | 111.22 | 8 |
4 | 2 500 | 47.71 | 5 |
5 | 2 500 | 82.44 | 8 |
6 | 2 500 | 111.22 | 3 |
7 | 3 300 | 47.71 | 8 |
8 | 3 300 | 82.44 | 3 |
9 | 3 300 | 111.22 | 5 |
序号 | 转速 | 激振 频率 | 钻头 直径 | 加速度振幅 | 应变差 |
---|---|---|---|---|---|
r·min-1 | Hz | mm | m·s-2 | ||
1 | 1 200 | 47.71 | 3 | 7 | 58 |
2 | 1 200 | 82.44 | 5 | 10 | 54 |
3 | 1 200 | 111.22 | 8 | 22 | 49 |
4 | 2 500 | 47.71 | 5 | 8 | 65 |
5 | 2 500 | 82.44 | 8 | 18 | 55 |
6 | 2 500 | 111.22 | 3 | 25 | 45 |
7 | 3 300 | 47.71 | 8 | 8 | 57 |
8 | 3 300 | 82.44 | 3 | 20 | 54 |
9 | 3 300 | 111.22 | 5 | 35 | 40 |
极差1 | 8 | 19.66 | 2 | ||
极差2 | 4.67 | 15.33 | 1.34 | ||
主次顺序 | 激振频率>转速>钻头直径 | ||||
最优水平 | 3 300 | 111.22 | 5 | ||
最优组合 | 转速3 300 r·min-1,激振频率111.22 Hz, 钻头直径5 mm |
Table 6 Analysis of extreme differences
序号 | 转速 | 激振 频率 | 钻头 直径 | 加速度振幅 | 应变差 |
---|---|---|---|---|---|
r·min-1 | Hz | mm | m·s-2 | ||
1 | 1 200 | 47.71 | 3 | 7 | 58 |
2 | 1 200 | 82.44 | 5 | 10 | 54 |
3 | 1 200 | 111.22 | 8 | 22 | 49 |
4 | 2 500 | 47.71 | 5 | 8 | 65 |
5 | 2 500 | 82.44 | 8 | 18 | 55 |
6 | 2 500 | 111.22 | 3 | 25 | 45 |
7 | 3 300 | 47.71 | 8 | 8 | 57 |
8 | 3 300 | 82.44 | 3 | 20 | 54 |
9 | 3 300 | 111.22 | 5 | 35 | 40 |
极差1 | 8 | 19.66 | 2 | ||
极差2 | 4.67 | 15.33 | 1.34 | ||
主次顺序 | 激振频率>转速>钻头直径 | ||||
最优水平 | 3 300 | 111.22 | 5 | ||
最优组合 | 转速3 300 r·min-1,激振频率111.22 Hz, 钻头直径5 mm |
1 | Meng T, Xie J, Li X,et al.Experimental study on the evolutional trend of pore structures and fractal dimension of low‑rank coal rich clay subjected to a coupled thermo‐hydromechanical‑chemical environment[J].Energy,2020,203:117838. |
2 | Tian J L, Wu Y H, Deng Z.Rock‑breaking performance and experimental study of split bit[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2023,45(11):580-591. |
3 | Zhao Y, Zhang C S, Zhang Z Z,et al.The rock breaking mechanism analysis of axial ultra‑high frequency vibration assisted drilling by single PDC cutter[J].Journal of Petroleum Science and Engineering,2021,205:108859. |
4 | Xue Y D, Zhou J, Liu C,et al.Rock fragmentation induced by a TBM disc-cutter considering the effects of joints:a numerical simulation by DEM[J].Computers and Geotechnics,2021,136:104230. |
5 | 陈杰,牟小军,李汉兴,等.旋冲振荡钻井提速工具的研制与应用[J].断块油气田,2020,27(3):386-389. |
Chen Jie, Mou Xiao‐jun, Li Han‐xing,et al.Development and application of rotary‑percussive and oscillatory drilling tool[J].Fault-Block Oil & Gas Field,2020,27(3):386-389. | |
6 | Zha C Q, Liu G H, Li J,et al.Combined percussive‑rotary drilling to increase rate of penetration and life of drill bit in drilling hard rock formation[J].Chemistry and Technology of Fuels and Oils,2017,53:254-262. |
7 | Aguiar R R, D'Almeida E F V, Ritto T G.Vibro‑impact model and validation of the axial dynamics of a vibration assisted drilling tool[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42(11):598-614. |
8 | Fernando P K S C, Pei Z J, Zhang M.Mechanistic cutting force model for rotary ultrasonic machining of rocks[J].The International Journal of Advanced Manufacturing Technology,2020,109 (1/2):109–128. |
9 | 田英健,邹平,陈硕,等.轴向超声振动辅助钻削机理与试验研究[J].东北大学学报(自然科学版),2019,40(5):705-709. |
Tian Ying‑jian, Zou Ping, Chen Shuo,et al.Cutting mechanism research and experimental study on axial ultrasonic vibration assisted drilling[J].Journal of Northeastern University (Natural Science),2019,40(5):705-709. | |
10 | Yang S, Zhang N, Feng X W,et al.Experimental investigation of sandstone under cyclic loading: damage assessment using ultrasonic wave velocities and changes in elastic modulus[J].Shock and Vibration,2018,2018:7845143. |
11 | Li S Q, Yan T, Li W,et al.Modeling of vibration response of rock by harmonic impact[J].Journal of Natural Gas Science and Engineering,2015,23:90-96. |
12 | Mikhailova N, Onawumi P Y, Volkov G,et al.Ultrasonically assisted drilling in marble[J].Journal of Sound and Vibration,2019,460:114880. |
13 | Zhang L, Wang X F, Wang J Y,et al.Mechanical characteristics and pore evolution of red sandstone under ultrasonic high‑frequency vibration excitation[J].AIP Advances,2021,11(5): 55202. |
14 | Niu Y, Jiao F, Zhao B,et al.Multi‐objective optimization of processing parameters in longitudinal‑torsion ultrasonic assisted milling of Ti‑6Al‑4V[J].The International Journal of Advanced Manufacturing Technology,2017,93(9/10/11/12):4345-4356. |
15 | Xiang D H, Wu B F, Yao Y L,et al.Ultrasonic longitudinal‐torsional vibration‑assisted cutting of Nomex honeycomb‐core composites[J].The International Journal of Advanced Manufacturing Technology,2019,100(5/6/7/8):1521-1530. |
16 | Lin S Y. Study on the Langevin piezoelectric ceramic ultra‑sonic transducer of longitudinal‑flexural composite vibrational mode[J].Ultrasonics,2006,44(1):109-114. |
17 | Zhou G P, Zhang Y, Zhang B.The complex mode vibration of ultrasonic vibration systems[J].Ultrasonics,2002,40(1):907-911. |
18 | Qian X H, Shen M H.A new standing wave linear moving ultrasonic motor based on two bending modes[J].Applied Mechanics and Materials,2011,101/102:140-143. |
19 | Wang J, Guo J F.Development of a radial‑torsional vibration hybrid type ultrasonic motor with a hollow and short cylindrical structure[J].IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,2009,56(5):54-58. |
20 | Ma C X, Shamoto E, Moriwaki T,et al.Study of machining accuracy in ultrasonic elliptical vibration cutting[J].International Journal of Machine Tools and Manufacture,2004,44(12/13):1305-1310. |
21 | Paktinat H, Amini S.Numerical and experimental studies of longitudinal and longitudinal‑torsional vibrations in drilling of AISI 1045[J].The International Journal of Advanced Manufacturing Technology,2017,94(5/6/7/8):2577-2592. |
22 | Asami T, Miura H.Study of ultrasonic machining by longitudinal‑torsional vibration for processing brittle materials‑observation of machining marks[J].Physics Procedia,2015,70:118-121. |
23 | Nandakumar K, Wiercigroch M.Stability analysis of a state dependent delayed,coupled two DOF model of drillstring vibration[J].Journal of Sound and Vibration,2013,332(10):2575-2592. |
24 | 李子丰,张永贵,侯绪田,等 .钻柱纵向和扭转振动分析[J].工程力学,2006,23(4):203-209. |
Li Zi‑feng, Zhang Yong‑gui, Hou Xu‑tian,et al.Analysis of longitudinal and torsion vibration of drillstring[J].Engineering Mechanics,2006,23(4):203-209. | |
25 | Christoforou A P, Yigit A S.Fully coupled vibrations of actively controlled drill strings[J].Journal of Sound and Vibration,2003,267(5):1029-1045. |
26 | 赵研,张丛珊,高科,等.超声波辅助PDC 切削齿振动破 岩仿真分析[J].钻探工程,2021,48(4):11-20. |
Zhao Yan, Zhang Cong‑shan, Gao Ke,et al.Rock breaking simulation analysis for the ultrasonicvibration‑assisted PDC cutter [J].Drilling Engineering,2021,48(4):11-20. | |
27 | 韩君鹏,赵大军,张书磊,等.基于离散元的超声波振动辅助TBM 滚刀碎岩分析[J].钻探工程,2021,48(3):46-55. |
Han Jun‑peng, Zhao Da‑jun, Zhang Shu‑lei,et al.Discrete element‑based rock breaking analysis of the ultrasonic vibration‑assisted TBM disc cutter[J].Drilling Engineering,2021,48(3):46-55. |
[1] | ZHOU Heng, YOU Yang, LUO Zhi-guo, ZOU Zong-shu. Discrete Element Simulation of Solid Flow Pattern and Transient Features of Burden Descending in COREX Shaft Furnace [J]. Journal of Northeastern University:Natural Science, 2015, 36(9): 1293-1297. |
[2] | HUO Jun-zhou, CHEN Wei, OUYANG Xiang-yu, ZHANG Xu. Optimum Design of TBM Mucking Slot Based on the Rock Ballasts Fluidity [J]. Journal of Northeastern University Natural Science, 2015, 36(5): 715-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||