Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (8): 1193-1200.DOI: 10.12068/j.issn.1005-3026.2024.08.016
• Management Science • Previous Articles Next Articles
Tao LIU1, Xin-tian ZHUANG1, Wei-ping ZHANG2
Received:
2023-03-21
Online:
2024-08-15
Published:
2024-11-12
CLC Number:
Tao LIU, Xin-tian ZHUANG, Wei-ping ZHANG. Supplier Relations and Corporate Digital Transformation[J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1193-1200.
变量 | 未添加控制变量 | 添加控制变量 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -1.610*** | -0.781*** | -1.147*** | -0.752*** |
(-4.79) | (-3.38) | (-3.36) | (-3.16) | |
Cs2 | 1.185*** | 0.658*** | 0.822** | 0.630** |
(3.35) | (2.69) | (2.34) | (2.55) | |
Sp | — | — | 0.173*** | 0.030* |
(7.93) | (1.88) | |||
Ap | — | — | 0.036 | 0.033 |
(0.57) | (0.75) | |||
Lp | — | — | -0.158 | -0.135 |
(-1.32) | (-1.45) | |||
Cf | — | — | -0.857*** | -0.459*** |
(-4.19) | (-3.00) | |||
Rpg | — | — | 0.184*** | 0.089*** |
(5.58) | (3.84) | |||
Rpc | — | — | -0.254 | -0.228 |
(-0.86) | (-1.00) | |||
pp | — | — | 0.076*** | 0.015 |
(5.08) | (1.30) | |||
e1 | — | — | -0.059 | -0.130 |
(-0.43) | (-1.27) | |||
Ce | — | — | -0.374** | 0.081 |
(-1.99) | (0.66) | |||
S | — | — | 0.103*** | 0.064** |
(2.82) | (2.36) | |||
截距项 | 0.179 | 0.404*** | -4.984*** | -1.008*** |
(0.75) | (2.90) | (-9.61) | (-2.68) | |
调整R2值 | 0.475 | 0.475 | 0.488 | 0.477 |
样本量 | 14 066 | 14 066 | 14 066 | 14 066 |
Table 1 Supplier relationship and corporate digital
变量 | 未添加控制变量 | 添加控制变量 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -1.610*** | -0.781*** | -1.147*** | -0.752*** |
(-4.79) | (-3.38) | (-3.36) | (-3.16) | |
Cs2 | 1.185*** | 0.658*** | 0.822** | 0.630** |
(3.35) | (2.69) | (2.34) | (2.55) | |
Sp | — | — | 0.173*** | 0.030* |
(7.93) | (1.88) | |||
Ap | — | — | 0.036 | 0.033 |
(0.57) | (0.75) | |||
Lp | — | — | -0.158 | -0.135 |
(-1.32) | (-1.45) | |||
Cf | — | — | -0.857*** | -0.459*** |
(-4.19) | (-3.00) | |||
Rpg | — | — | 0.184*** | 0.089*** |
(5.58) | (3.84) | |||
Rpc | — | — | -0.254 | -0.228 |
(-0.86) | (-1.00) | |||
pp | — | — | 0.076*** | 0.015 |
(5.08) | (1.30) | |||
e1 | — | — | -0.059 | -0.130 |
(-0.43) | (-1.27) | |||
Ce | — | — | -0.374** | 0.081 |
(-1.99) | (0.66) | |||
S | — | — | 0.103*** | 0.064** |
(2.82) | (2.36) | |||
截距项 | 0.179 | 0.404*** | -4.984*** | -1.008*** |
(0.75) | (2.90) | (-9.61) | (-2.68) | |
调整R2值 | 0.475 | 0.475 | 0.488 | 0.477 |
样本量 | 14 066 | 14 066 | 14 066 | 14 066 |
变量 | 反向因果关系检验 | 样本选择偏差检验 | 遗漏变量检验 | |||
---|---|---|---|---|---|---|
D1 | D2 | D1 | D2 | D1 | D2 | |
Cs1 | -1.160*** | -0.753*** | -1.050*** | -0.620*** | -0.598** | -0.371* |
(-3.39) | (-3.16) | (-3.99) | (-3.35) | (-2.51) | (-1.78) | |
Cs2 | 0.820** | 0.630** | 0.676*** | 0.465** | 0.528** | 0.412* |
(2.33) | (2.55) | (2.48) | (2.41) | (2.15) | (1.93) | |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
调整R2 值 | 0.488 | 0.477 | 0.481 | 0.493 | 0.254 | 0.123 |
样本量 | 14 066 | 14 066 | 20 754 | 20 754 | 14 066 | 14 066 |
Table 2 Endogenous test
变量 | 反向因果关系检验 | 样本选择偏差检验 | 遗漏变量检验 | |||
---|---|---|---|---|---|---|
D1 | D2 | D1 | D2 | D1 | D2 | |
Cs1 | -1.160*** | -0.753*** | -1.050*** | -0.620*** | -0.598** | -0.371* |
(-3.39) | (-3.16) | (-3.99) | (-3.35) | (-2.51) | (-1.78) | |
Cs2 | 0.820** | 0.630** | 0.676*** | 0.465** | 0.528** | 0.412* |
(2.33) | (2.55) | (2.48) | (2.41) | (2.15) | (1.93) | |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
调整R2 值 | 0.488 | 0.477 | 0.481 | 0.493 | 0.254 | 0.123 |
样本量 | 14 066 | 14 066 | 20 754 | 20 754 | 14 066 | 14 066 |
检验项目 | D1 | D2 | ||
---|---|---|---|---|
下限 | 上限 | 下限 | 上限 | |
上下界区间 | 0.049 | 0.918 | 0.049 | 0.918 |
上下界斜率 | -1.066*** | 0.363*** | -0.690*** | 0.405*** |
(-6.48) | (1.82) | (-5.42) | (2.63) | |
临近置信区间 | [0.600,0.949] | [0.523,0.767] | ||
极值点 | 0.697 | 0.597 | ||
“U”型关系检验 | 1.82** | 2.63*** |
Table 3 “U” type relationship test
检验项目 | D1 | D2 | ||
---|---|---|---|---|
下限 | 上限 | 下限 | 上限 | |
上下界区间 | 0.049 | 0.918 | 0.049 | 0.918 |
上下界斜率 | -1.066*** | 0.363*** | -0.690*** | 0.405*** |
(-6.48) | (1.82) | (-5.42) | (2.63) | |
临近置信区间 | [0.600,0.949] | [0.523,0.767] | ||
极值点 | 0.697 | 0.597 | ||
“U”型关系检验 | 1.82** | 2.63*** |
变量 | D1 | D2 |
---|---|---|
Rst1 | -0.945** | -0.660** |
(-2.53) | (-2.46) | |
Rst2 | 0.992* | 0.908** |
(1.73) | (2.16) | |
控制变量 | 已控制 | 已控制 |
调整R2值 | 0.486 | 0.476 |
样本量 | 14 066 | 14 066 |
Table 4 Replacement variable test
变量 | D1 | D2 |
---|---|---|
Rst1 | -0.945** | -0.660** |
(-2.53) | (-2.46) | |
Rst2 | 0.992* | 0.908** |
(1.73) | (2.16) | |
控制变量 | 已控制 | 已控制 |
调整R2值 | 0.486 | 0.476 |
样本量 | 14 066 | 14 066 |
变量 | L1 | L4 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -1.104*** | -0.647** | -1.217*** | -0.801*** |
(-2.91) | (-2.54) | (-2.64) | (-2.73) | |
Cs2 | 0.859** | 0.564** | 1.204** | 0.813*** |
(2.16) | (2.09) | (2.40) | (2.58) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2值 | 0.497 | 0.464 | 0.481 | 0.467 |
样本量 | 10 943 | 10 943 | 5 443 | 5 443 |
Table 5 Extended observation window test
变量 | L1 | L4 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -1.104*** | -0.647** | -1.217*** | -0.801*** |
(-2.91) | (-2.54) | (-2.64) | (-2.73) | |
Cs2 | 0.859** | 0.564** | 1.204** | 0.813*** |
(2.16) | (2.09) | (2.40) | (2.58) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2值 | 0.497 | 0.464 | 0.481 | 0.467 |
样本量 | 10 943 | 10 943 | 5 443 | 5 443 |
变量 | 剔除非制造业企业样本 | 剔除直辖市企业样本 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | 1.013*** | 0.872*** | 1.086*** | 0.721*** |
(-4.38) | (-5.12) | (-2.85) | (-2.76) | |
Cs2 | 0.629** | 0.706*** | 0.681* | 0.565** |
(2.51) | (3.91) | (1.76) | (2.07) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2值 | 0.335 | 0.316 | 0.452 | 0.428 |
样本量 | 10 092 | 10 092 | 11 761 | 11 761 |
Table 6 Replacement sample test
变量 | 剔除非制造业企业样本 | 剔除直辖市企业样本 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | 1.013*** | 0.872*** | 1.086*** | 0.721*** |
(-4.38) | (-5.12) | (-2.85) | (-2.76) | |
Cs2 | 0.629** | 0.706*** | 0.681* | 0.565** |
(2.51) | (3.91) | (1.76) | (2.07) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2值 | 0.335 | 0.316 | 0.452 | 0.428 |
样本量 | 10 092 | 10 092 | 11 761 | 11 761 |
变量 | 行业竞争度高 | 行业竞争度低 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -0.511 | -0.705** | -1.661*** | -0.799*** |
(-1.14) | (-2.09) | (-3.74) | (-2.83) | |
Cs2 | 0.220 | 0.505 | 1.307*** | 0.764** |
(0.48) | (1.49) | (2.83) | (2.50) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2值 | 0.566 | 0.547 | 0.378 | 0.317 |
样本量 | 7 026 | 7 026 | 7 040 | 7 040 |
Table 7 Heterogeneity test of the degree of industrial
变量 | 行业竞争度高 | 行业竞争度低 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -0.511 | -0.705** | -1.661*** | -0.799*** |
(-1.14) | (-2.09) | (-3.74) | (-2.83) | |
Cs2 | 0.220 | 0.505 | 1.307*** | 0.764** |
(0.48) | (1.49) | (2.83) | (2.50) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2值 | 0.566 | 0.547 | 0.378 | 0.317 |
样本量 | 7 026 | 7 026 | 7 040 | 7 040 |
变量 | 国有企业 | 非国有企业 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -0.437 | -0.427 | -1.356*** | -0.870*** |
(-0.72) | (-0.96) | (-3.47) | (-3.21) | |
Cs2 | 0.226 | 0.565 | 0.980** | 0.665** |
(0.38) | (1.37) | (2.41) | (2.28) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2 值 | 0.479 | 0.491 | 0.498 | 0.469 |
样本量 | 3 316 | 3 316 | 10 750 | 10 750 |
Table 8 Heterogeneity test of the nature of property
变量 | 国有企业 | 非国有企业 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -0.437 | -0.427 | -1.356*** | -0.870*** |
(-0.72) | (-0.96) | (-3.47) | (-3.21) | |
Cs2 | 0.226 | 0.565 | 0.980** | 0.665** |
(0.38) | (1.37) | (2.41) | (2.28) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2 值 | 0.479 | 0.491 | 0.498 | 0.469 |
样本量 | 3 316 | 3 316 | 10 750 | 10 750 |
变量 | 专精特新企业 | 非专精特新企业 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -2.614*** | -2.351*** | -0.886** | -0.432* |
(-3.33) | (-3.63) | (-2.35) | (-1.72) | |
Cs2 | 2.316*** | 1.994*** | 0.561 | 0.366 |
(2.96) | (3.25) | (1.43) | (1.36) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2 值 | 0.447 | 0.418 | 0.505 | 0.496 |
样本量 | 2 934 | 2 934 | 11 132 | 11 132 |
Table 9 Heterogeneity test of technological nature
变量 | 专精特新企业 | 非专精特新企业 | ||
---|---|---|---|---|
D1 | D2 | D1 | D2 | |
Cs1 | -2.614*** | -2.351*** | -0.886** | -0.432* |
(-3.33) | (-3.63) | (-2.35) | (-1.72) | |
Cs2 | 2.316*** | 1.994*** | 0.561 | 0.366 |
(2.96) | (3.25) | (1.43) | (1.36) | |
控制变量 | 控制 | 控制 | 控制 | 控制 |
调整R2 值 | 0.447 | 0.418 | 0.505 | 0.496 |
样本量 | 2 934 | 2 934 | 11 132 | 11 132 |
变量 | Ct | 未加入供应商集中度 | 加入商业信用融资 | |||
---|---|---|---|---|---|---|
Ct1 | Ct2 | D1 | D2 | D1 | D2 | |
Cs1 | -0.058*** | -0.116*** | — | — | -1.102*** | -0.682*** |
(-7.33) | (-4.35) | (-3.22) | (-2.87) | |||
Cs2 | — | 0.067** | — | — | 0.796** | 0.590** |
(2.40) | (2.27) | (2.40) | ||||
Ct | — | — | 0.527** (2.44) | 0.670*** (4.64) | 0.389* (1.79) | 0.608*** (4.15) |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
调整R2 值 | 0.507 | 0.508 | 0.478 | 0.489 | 0.489 | 0.479 |
样本量 | 14 066 | 14 066 | 14 066 | 14 066 | 14 066 | 14 066 |
Table 10 Mechanism analysis test: trade credit financing
变量 | Ct | 未加入供应商集中度 | 加入商业信用融资 | |||
---|---|---|---|---|---|---|
Ct1 | Ct2 | D1 | D2 | D1 | D2 | |
Cs1 | -0.058*** | -0.116*** | — | — | -1.102*** | -0.682*** |
(-7.33) | (-4.35) | (-3.22) | (-2.87) | |||
Cs2 | — | 0.067** | — | — | 0.796** | 0.590** |
(2.40) | (2.27) | (2.40) | ||||
Ct | — | — | 0.527** (2.44) | 0.670*** (4.64) | 0.389* (1.79) | 0.608*** (4.15) |
控制变量 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
调整R2 值 | 0.507 | 0.508 | 0.478 | 0.489 | 0.489 | 0.479 |
样本量 | 14 066 | 14 066 | 14 066 | 14 066 | 14 066 | 14 066 |
1 | 史宇鹏,王阳,张文韬.我国企业数字化转型:现状、问题与展望[J].经济学家,2021(12):90-97. |
Shi Yu‑peng, Wang Yang, Zhang Wen‑tao.Digital transformation of enterprises in China:current situation,problems and prospects[J].Economist,2021(12):90-97. | |
2 | 袁淳,肖土盛,耿春晓,等.数字化转型与企业分工:专业化还是纵向一体化[J].中国工业经济,2021(9):137-155. |
Yuan Chun, Xiao Tu‑sheng, Geng Chun‑xiao,et al.Digital transformation and division of labor between enterprises:vertical specialization or vertical integration[J].China Industrial Economics,2021(9):137-155. | |
3 | Paunov C, Rollo V.Has the Internet fostered inclusive innovation in the developing world?[J].World Development,2016,78:587-609. |
4 | 吴非,胡慧芷,林慧妍,等.企业数字化转型与资本市场表现——来自股票流动性的经验证据[J].管理世界,2021,37(7):130-144,10. |
Wu Fei, Hu Hui‑zhi, Lin Hui‑yan,et al.Enterprise digital transformation and capital market performance:empirical evidence from stock liquidity[J].Journal of Management World,2021,37(7):130-144,10. | |
5 | 成琼文,丁红乙.税收优惠对资源型企业数字化转型的影响研究[J].管理学报,2022,19(8):1125-1133. |
Cheng Qiong‑wen, Ding Hong‑yi.Research on the impact of tax incentives on the digital transformation of resource‑based enterprises[J].Chinese Journal of Management,2022,19(8):1125-1133. | |
6 | Firk S, Hanelt A, Oehmichen J,et al.Chief digital officers:an analysis of the presence of a centralized digital transformation role[J].Journal of Management Studies,2021,58(7):1800-1831. |
7 | Xu G Y, Li G G, Sun P B,et al.Inefficient investment and digital transformation:what is the role of financing constraints?[J].Finance Research Letters,2023,51:103429. |
8 | Dong Y Z, Li C, Li H Y.Customer concentration and M&A performance[J].Journal of Corporate Finance,2021,69:102021. |
9 | Campello M, Gao J.Customer concentration and loan contract terms[J].Journal of Financial Economics,2017,123(1):108-136. |
10 | Zhang X D, Zou M F, Liu W M,et al.Does a firm’s supplier concentration affect its cash holding?[J].Economic Modelling,2020,90:527-535. |
11 | Bode C, Wagner S M.Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions[J].Journal of Operations Management,2015,36(1):215-228. |
12 | Wuyts S, Dutta S.Benefiting from alliance portfolio diversity:the role of past internal knowledge creation strategy[J].Journal of Management,2014,40(6):1653-1674. |
13 | Kim Y H, Henderson D.Financial benefits and risks of dependency in triadic supply chain relationships[J].Journal of Operations Management,2015,36(1):115-129. |
14 | 王迪,刘祖基,赵泽朋.供应链关系与银行借款——基于供应商/客户集中度的分析[J].会计研究,2016,348(10):42-49,96. |
Wang Di, Liu Zu‑ji, Zhao Ze‑peng.Supply‑chain relationship and bank loan:based on the analysis of supplier/customer concentration[J].Accounting Research,2016,348(10):42-49,96. | |
15 | Chu Y Q, Tian X, Wang W Y.Corporate innovation along the supply chain[J].Management Science,2019,65(6):2445-2466. |
16 | Cao Z F, Chen S X, Lee E.Does business strategy influence interfirm financing? evidence from trade credit[J].Journal of Business Research,2022,141:495-511. |
17 | Uchida H, Udell G F, Watanabe W.Are trade creditors relationship lenders?[J].Japan and the World Economy,2013,25/26:24-38. |
18 | Chod J, Lyandres E, Yang S A.Trade credit and supplier competition[J].Journal of Financial Economics,2019,131(2):484-505. |
19 | Fabbri D, Klapper L F.Bargaining power and trade credit[J].Journal of Corporate Finance,2016,41:66-80. |
20 | Li Z Y, Ying Q W, Yan W,et al.Does just in‐time adoption have an impact on corporate innovation:evidence from China[J].Accounting & Finance,2022,62(sup1):1599-1635. |
21 | Terza J V, Basu A, Rathouz P J.Two‑stage residual inclusion estimation:addressing endogeneity in health econometric modeling[J].Journal of Health Economics,2008,27(3):531-543. |
22 | 吴粒,王迪,袁知柱.董事网络位置、社会信任与企业风险承担[J].东北大学学报(自然科学版),2023,44(7):1057-1064. |
Wu Li, Wang Di, Yuan Zhi‑zhu.Directors’ network position,social trust and corporate risk‑taking[J].Journal of Northeastern University(Natural Science),2023,44(7):1057-1064. |
[1] | WU Li, WANG Di, YUAN Zhi-zhu. Directors’ Network Position, Social Trust and Corporate Risk-taking [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 1057-1064. |
[2] | YU Liping, LI Xiangyuan, HUANG Xiaoyuan. Supply Chain Coordination Based on Revenue Sharing Contract in B2B eMarkets with Trade Credit Financing [J]. Journal of Northeastern University Natural Science, 2014, 35(6): 908-912. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||