Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (9): 1217-1226.DOI: 10.12068/j.issn.1005-3026.2024.09.001
• Information & Control •
Yan LIU(), Qi-jie BU, Hong-chen ZHAO, Xin GUO
Received:
2023-04-26
Online:
2024-09-15
Published:
2024-12-16
Contact:
Yan LIU
About author:
LIU Yan,E-mail:liuyan@ise.neu.edu.CLC Number:
Yan LIU, Qi-jie BU, Hong-chen ZHAO, Xin GUO. Operating Performance Assessment of Flotation Process Based on Multi-source Heterogeneous Information[J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1217-1226.
序号 | 名称 | 单位 | 序号 | 名称 | 单位 |
---|---|---|---|---|---|
1 | 粗选X轴速度 | cm/s | 16 | 浮选机检测点1液位 | cm |
2 | 粗选Y轴速度 | cm/s | 17 | 浮选机检测点2液位 | cm |
3 | 粗选大泡数 | 个 | 18 | 浮选机检测点3液位 | cm |
4 | 粗选中泡数 | 个 | 19 | 浮选机检测点4液位 | cm |
5 | 粗选小泡数 | 个 | 20 | 浮选机检测点5液位 | cm |
6 | 粗选大泡面积 | 像素 | 21 | 浮选机1充气量测量值 | m3/min |
7 | 粗选中泡面积 | 像素 | 22 | 浮选机2充气量测量值 | m3/min |
8 | 粗选小泡面积 | 像素 | 23 | 浮选机3充气量测量值 | m3/min |
9 | 粗选大泡稳定性 | % | 24 | 浮选机4充气量测量值 | m3/min |
10 | 粗选中泡稳定性 | % | 25 | 浮选机5充气量测量值 | m3/min |
11 | 粗选小泡稳定性 | % | 26 | 浮选机6充气量测量值 | m3/min |
12 | 粗选泡沫稳定性 | % | 27 | 浮选机7充气量测量值 | m3/min |
13 | 粗选图像色调 | ° | 28 | 浮选机8充气量测量值 | m3/min |
14 | 粗选图像饱和度 | % | 29 | 浮选机9充气量测量值 | m3/min |
15 | 粗选图像亮度 | % |
Table 1 Variables of the flotation process
序号 | 名称 | 单位 | 序号 | 名称 | 单位 |
---|---|---|---|---|---|
1 | 粗选X轴速度 | cm/s | 16 | 浮选机检测点1液位 | cm |
2 | 粗选Y轴速度 | cm/s | 17 | 浮选机检测点2液位 | cm |
3 | 粗选大泡数 | 个 | 18 | 浮选机检测点3液位 | cm |
4 | 粗选中泡数 | 个 | 19 | 浮选机检测点4液位 | cm |
5 | 粗选小泡数 | 个 | 20 | 浮选机检测点5液位 | cm |
6 | 粗选大泡面积 | 像素 | 21 | 浮选机1充气量测量值 | m3/min |
7 | 粗选中泡面积 | 像素 | 22 | 浮选机2充气量测量值 | m3/min |
8 | 粗选小泡面积 | 像素 | 23 | 浮选机3充气量测量值 | m3/min |
9 | 粗选大泡稳定性 | % | 24 | 浮选机4充气量测量值 | m3/min |
10 | 粗选中泡稳定性 | % | 25 | 浮选机5充气量测量值 | m3/min |
11 | 粗选小泡稳定性 | % | 26 | 浮选机6充气量测量值 | m3/min |
12 | 粗选泡沫稳定性 | % | 27 | 浮选机7充气量测量值 | m3/min |
13 | 粗选图像色调 | ° | 28 | 浮选机8充气量测量值 | m3/min |
14 | 粗选图像饱和度 | % | 29 | 浮选机9充气量测量值 | m3/min |
15 | 粗选图像亮度 | % |
名称 | 输出维度 | 参数 |
---|---|---|
卷积层 | 32×32 | 3×3,32,步长=2 |
恒等映射模块 | 32×32 | 3×3,32,步长=1 |
恒等映射模块 | 32×32 | 3×3,32,步长=1 |
恒等映射模块 | 32×32 | 3×3,32,步长=1 |
投影映射模块 | 16×16 | 3×3,64,步长=1 |
恒等映射模块 | 16×16 | 3×3,64,步长=1 |
恒等映射模块 | 16×16 | 3×3,64,步长=1 |
投影映射模块 | 8×8 | 3×3,128,步长=1 |
恒等映射模块 | 8×8 | 3×3,128,步长=1 |
恒等映射模块 | 8×8 | 3×3,128,步长=1 |
平均池化层 | 128 | — |
全连接层 | 11 | — |
Table 2 Structure of ResNet
名称 | 输出维度 | 参数 |
---|---|---|
卷积层 | 32×32 | 3×3,32,步长=2 |
恒等映射模块 | 32×32 | 3×3,32,步长=1 |
恒等映射模块 | 32×32 | 3×3,32,步长=1 |
恒等映射模块 | 32×32 | 3×3,32,步长=1 |
投影映射模块 | 16×16 | 3×3,64,步长=1 |
恒等映射模块 | 16×16 | 3×3,64,步长=1 |
恒等映射模块 | 16×16 | 3×3,64,步长=1 |
投影映射模块 | 8×8 | 3×3,128,步长=1 |
恒等映射模块 | 8×8 | 3×3,128,步长=1 |
恒等映射模块 | 8×8 | 3×3,128,步长=1 |
平均池化层 | 128 | — |
全连接层 | 11 | — |
指标 | 方法 | 状态等级 | 加权平均 | |||
---|---|---|---|---|---|---|
差 | 中 | 良 | 优 | |||
精准率 | ResNet | 97.93 | 96.56 | 96.41 | 98.90 | 97.42 |
SSPAE | 92.68 | 96.75 | 97.12 | 98.98 | 96.67 | |
ResNet-SSPAE | 93.55 | 98.88 | 96.68 | 98.32 | 97.05 | |
ResNet-SSPAE-AM | 96.13 | 99.29 | 95.93 | 99.73 | 97.82 | |
召回率 | ResNet | 97.93 | 97.73 | 97.14 | 97.04 | 97.41 |
SSPAE | 97.83 | 94.48 | 96.51 | 97.78 | 96.62 | |
ResNet-SSPAE | 98.49 | 93.65 | 97.71 | 98.05 | 96.97 | |
ResNet-SSPAE-AM | 98.21 | 95.31 | 98.67 | 98.72 | 97.78 | |
F1-score | ResNet | 97.93 | 97.14 | 96.77 | 97.96 | 97.41 |
SSPAE | 95.19 | 95.60 | 96.82 | 98.38 | 96.63 | |
ResNet-SSPAE | 95.96 | 96.19 | 97.19 | 98.18 | 96.98 | |
ResNet-SSPAE-AM | 97.16 | 97.26 | 97.28 | 99.22 | 97.78 |
Table 3 Precision,recall and F1-score of different assessment methods
指标 | 方法 | 状态等级 | 加权平均 | |||
---|---|---|---|---|---|---|
差 | 中 | 良 | 优 | |||
精准率 | ResNet | 97.93 | 96.56 | 96.41 | 98.90 | 97.42 |
SSPAE | 92.68 | 96.75 | 97.12 | 98.98 | 96.67 | |
ResNet-SSPAE | 93.55 | 98.88 | 96.68 | 98.32 | 97.05 | |
ResNet-SSPAE-AM | 96.13 | 99.29 | 95.93 | 99.73 | 97.82 | |
召回率 | ResNet | 97.93 | 97.73 | 97.14 | 97.04 | 97.41 |
SSPAE | 97.83 | 94.48 | 96.51 | 97.78 | 96.62 | |
ResNet-SSPAE | 98.49 | 93.65 | 97.71 | 98.05 | 96.97 | |
ResNet-SSPAE-AM | 98.21 | 95.31 | 98.67 | 98.72 | 97.78 | |
F1-score | ResNet | 97.93 | 97.14 | 96.77 | 97.96 | 97.41 |
SSPAE | 95.19 | 95.60 | 96.82 | 98.38 | 96.63 | |
ResNet-SSPAE | 95.96 | 96.19 | 97.19 | 98.18 | 96.98 | |
ResNet-SSPAE-AM | 97.16 | 97.26 | 97.28 | 99.22 | 97.78 |
1 | Liu Y, Chang Y Q, Wang F L.Online process operating performance assessment and nonoptimal cause identification for industrial processes[J].Journal of Process Control,2014,24(10):1548-1555. |
2 | Chu F, Dai W, Shen J,et al.Online complex nonlinear industrial process operating optimality assessment using modified robust total kernel partial M‑regression[J].Chinese Journal of Chemical Engineering,2018,26(4):775-785. |
3 | Ye L B, Liu Y M, Fei Z S,et al.Online probabilistic assessment of operating performance based on safety and optimality indices for multimode industrial processes[J].Industrial & Engineering Chemistry Research,2009,48(24):10912-10923. |
4 | Zou X Y, Chang Y Q, Wang F L,et al.Process operating performance optimality assessment with coexistence of quantitative and qualitative information[J].The Canadian Journal of Chemical Engineering,2018,96(1):179-188. |
5 | Yan H, Wang F L, Yan G G,et al.Hybrid approach integrating case‑based reasoning and Bayesian network for operational adjustment in industrial flotation process[J].Journal of Process Control,2021,103:34-47. |
6 | Li J N, Chai T Y, Lewis F L,et al.Off‑policy Q‑learning:set‑point design for optimizing dual‑rate rougher flotation operational processes[J].IEEE Transactions on Industrial Electronics,2018,65(5):4092-4102. |
7 | Krizhevsky A, Sutskever I, Hinton G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. |
8 | Zarie M, Jahedsaravani A, Massinaei M.Flotation froth image classification using convolutional neural networks[J].Minerals Engineering,2020,155:106443. |
9 | Zhang Y J, Soon H G, Ye D S,et al.Powder‑bed fusion process monitoring by machine vision with hybrid convolutional neural networks[J].IEEE Transactions on Industrial Informatics,2020,16(9):5769-5779. |
10 | Wen L, Li X Y, Gao L,et al.A new convolutional neural network‑based data‑driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. |
11 | Huang T, Zhang Q, Tang X A,et al.A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems[J].Artificial Intelligence Review,2022,55(2):1289-1315. |
12 | Cen J, Yang Z H, Liu X,et al.A review of data‑driven machinery fault diagnosis using machine learning algorithms[J]. Journal of Vibration Engineering & Technologies,2022,10(7):2481-2507. |
13 | Yuan X F, Qi S B, Shardt Y A W,et al.Soft sensor model for dynamic processes based on multichannel convolutional neural network[J].Chemometrics and Intelligent Laboratory Systems,2020,203:104050. |
14 | He K M, Zhang X Y, Ren S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,2016:770-778. |
15 | Xue Z X, Yu X C, Liu B,et al.HResNetAM hierarchical residual network with attention mechanism for hyperspectral image classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:3566-3580. |
16 | Jiao J Y, Zhao M, Lin J,et al.Residual joint adaptation adversarial network for intelligent transfer fault diagnosis[J].Mechanical Systems and Signal Processing,2020,145:106962. |
17 | Yuan X F, Qi S B, Wang Y L.Stacked enhanced auto‑encoder for data‑driven soft sensing of quality variable[J].IEEE Transactions on Instrumentation and Measurement,2020,69(10):7953-7961. |
18 | Yu Y, Li J T, Li J C,et al.Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi‑sensor fusion[J].Developments in the Built Environment,2023,14:100128. |
19 | Deng Z W, Wang Z Y, Tang Z H,et al.A deep transfer learning method based on stacked autoencoder for cross‑domain fault diagnosis[J].Applied Mathematics and Computation,2021,408:126318. |
20 | Yuan X F, Li L, Wang Y L,et al.Deep learning for quality prediction of nonlinear dynamic processes with variable attention‑based long short‑term memory network[J].The Canadian Journal of Chemical Engineering,2020,98(6):1377-1389. |
[1] | Wei-wei LIU, Jia-he QIU, Guang-da HU, Ze-yuan LIU. Surface Damage Detection Method for Retired Shaft Parts Based on Improved YOLOv5 [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1002-1010. |
[2] | Ji-hong LIU, Lü-heng ZHANG, Hai-xu YANG. A Saturation Artifact Inpainting Algorithm for Cell Fluorescence Microscopic Images [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 921-927. |
[3] | Hong-li LI, Hao-yu LIU, Rong-hua ZHANG, Yi CHENG. Emotional Classification Based on Multidimensional Feature Matrix and Improved Dense Connection Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 928-935. |
[4] | An-lin TIAN, Wei-min LEI, Peng ZHANG, Wei ZHANG. A Multi-scale Edge Detection Method Based on Encoder-Decoder [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 936-943. |
[5] | Li-xin GUO, Su-tao BI, Ming-yang ZHAO. State Detection Algorithm of Manipulator Based on Improved YOLOv4 Lightweight Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 769-775. |
[6] | Dong-hong HAN, Yan-ru KONG, Yi-meng ZHAN, Yuan LIU. Research on Emotion Recognition Method of Music Multimodal Data [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 776-785. |
[7] | Yuan MA, Li-huang SHE, Jia-wei LI, Xi-rong BAO. Adaptive Graph Convolutional 3D Point Cloud Recognition Algorithm Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 786-792. |
[8] | Wei-qi ZHANG, Hui-ming WANG. Interpretable Deep Learning Prediction Model for Compressive Strength of Concrete [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 738-744. |
[9] | Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360. |
[10] | Ying SUN, Ya-ru ZHOU, Xue-ying ZHANG. Speech Emotion Recognition Fusing Functional Paralanguage Proportion Coefficient [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 40-48. |
[11] | JIANG Yang, LIU Cheng, DING Qi-chuan, WANG Li. Segmentation of COVID-19 CT Images Based on Dual Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1259-1268. |
[12] | WEI Jian-yi, WU Jing-jing. Resource Allocation Algorithm in Industrial Internet of Things Based on Edge Computing [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1072-1078. |
[13] | ZHOU Song, GAO Tian-han. EEG Recognition Method for Epileptic Patients Based on RNN Model with Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1098-1103. |
[14] | DING Qi-chuan, WANG Li, LIU Cheng. Classification of Pulmonary Nodule by Combining Long-Distance Channel Attention and Pathological Feature [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 476-485. |
[15] | YANG Xuan, HE Zhan-qi. Improved Two-layer BiLSTM Electrocardiosignal Segmentation Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1705-1711. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||